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In this study, a simple model describing the low—frequency scattering
properties of high void fraction bubble clouds in both the free field and near the
ocean surface is developed. This model, which is based on an effective medium
approximation and acoustically compact scatters, successfully predicts the re-
sults of the bubble cloud scattering experiment carried out at Lake Seneca in
New York state for frequencies consistent with the model assumptions (Roy
et al., 1992). The introduction of the surface is facilitated by the method of im-
ages and is subject to the same constraint of low—acoustic frequency imposed
by the compact scatterer assumption. This model is not intended to serve as
an exact replicate of oceanic bubble cloud scattering. The model herein was
kept simple by design, for only then can the complex physical behavior be
expressed in a simple analytical form. Simple, analytic theories facilitate the
exploration of parameter space, and more importantly serve to illuminate the

underlying physics.
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Chapter 1

Introduction

Until 1985, the primary source mechanism for the wind dependent ambient
noise! spectrum after the appearance of breaking waves on the sea surface in
the frequency range 20 to 2000 Hz was not well understood. Below 2000 Hz,
it has proven difficult to explain the ambient noise spectrum primarily since
the localization of the source mechanisms is difficult without the use of a large
directional receiver. Carey and Wagstaff (1986) and Carey and Bradly (1985)
summarized experimental evidence which strongly suggests that low frequency
noise is wind dependent and locally generated. Although it had been suggested
for many years that bubbles play a significant role in the creation of ambient
noise at the higher frequencies (Wenz, 1962; Kerman, 1984), the problem of
ambient noise generation at the lower frequencies was unclear.

Carey and Bradly (1985) and Prosperetti (1985) first suggested that

collective oscillations of bubble plumes or clouds near the ocean surface con-

1 An informal definition of ambient sound or ambient noise is the background sound that
is unwanted by anyone performing an acoustic measurement.



tributed to low—frequency wind-dependent ambient noise as a natural source
mechanism. Collective oscillations is a phenomenon in which individual bub-
bles in a mixture pulsate in unison at frequencies well below the natural res-
onance frequencies of the bubbles, resulting in a significant reduction in the
sound velocity. Needless to say, this phenomenon and the candidate source
mechanisms were met with less than universal enthusiasm. However, in the
past decade, many laboratory and field experimental efforts have established
that bubble cloud production is a viable source of low frequency sound in the
ocean (Roy et al., 1992; Carey et al., 1993; Kolaini et al., 1994; Yoon et al.,
1991, Nicholas et al., to be submitted; Hollet, 1994; Farmer & Vagle, 1989).
As early as 1946, it was established that the scattering of sound from
ship wakes was highly dependent on the population or density of bubbles en-
trained by turbulence or formed by propeller cavitation (NDRC, 1946). The
fundamental question to be answered is: what role, if any, do bubble clouds
play in sea surface scatter? Given that bubble clouds radiate sound at low
frequencies, it seems plausible that such clouds might be efficient scatterers
of sound as well. This hypothesis was fecently tested and verified in a well
controlled field experiment in a freshwater lake in New York state. The ex-
perimental design, analysis, and associated modeling effort is the topic of this

dissertation.




1.1 Ambient noise in the ocean

Prior to World War II, literally nothing was known about oceanic ambient
sound in a scientific context. Since that time, a prolific effort devoted to the
experimental characterization and theory of ambient noise production has gen-
erated hundreds of publications. The first to make an effort at measuring the
noise spectrum was Knudsen et al. (1948). Early in the war, his group per-
formed a series of ambient noise measurements in a number of bays, harbors,
and near off-shore areas. For obvious reasons, this data was not obtained in
the open sea. His results are known as the “Knudsen Curves” and display an
increasing source level with wind speed. The slopes of the curves are not wind
speed dependent and average -5 dB per octave in the frequency range 2-20 kHz.
At the time, the source mechanisms were unknown. He commented that the
near—surface noise contributions can be attributed to individual waves and
whitecaps, but that these momentary variations are not important at depth
(in his case 20 to 300 ft). These curves were regularly used in the years follow-
ing the war to estimate the noise levels in deep water.

In the years after the war, many experimental efforts were performed
in deeper water which confirmed the spectral slope of the Knudsen spectra,
but also encompassed a much broader frequency range both above and below
Knudsen'’s experimentai capabilities. Following Urick (1984), the noise spec-
trum is divided into five distinct bands as follows: Ultra-Low Band (< 2 Hz);
Infrasonic Band (2 to 20 Hz); Low Sonic Band (20 to 200 Hz); the High Sonic
Band (200 Hz to 20kHz); and the Ultrasonic Band (> 20kHz). A summary

of the noise contributions and the sources encompassing these bands is illus-



trated in Figure 1.1 (Wenz, 1962). It is clear that the noise spectrum slopes
primarily in a negative direction, but some regions possess a flat or positive
slope. The wind speed dependence in the figure is denoted by the Beaufort

wind force presented in Table 1.1.

Beaufort Sea Mean Wind Appe WProkgb'leht
Force State | Speed (my/s) ppearance av?m)elg

0 0 0 Sea like a mirror 0

1 1/2 1 Ripples w/out foam crests 0.08
2 1 2.5 Small wavelets; no breaking 0.15
3 9 45 Large wavelets; crests begin to 0.6

break
4 3 6.5 Small waves, becomn}g longer; 11
common breaking
5 4 95 Moderate waves, long form; 18

maybe some spray
Large waves begin to form. The
6 5 12.5 white foam crests are more 2.9
extensive everywhere
Sea heaps up and white foam
from breaking waves begins to
blow in streaks along the
direction of the wind.

4.1

Table 1.1: Beaufort scale of wind force and sea state.

The focus of this work is in the frequency range 20 to 2000 Hz for which
ambient noise displays a dominant dependence on shipping traffic and wind
speed. In remote areas where shipping noise is not prevalent (mostly in the
southern hemisphere), the noise spectrum is clearly dominated by wind speed
alone at the upper and lower frequencies (Kibblewhite et al., 1976). Further-
more, Whittenborn (1976), Bannister et al. (1981), and Kewley et al. (1990)
recognized that there are at least two wind dependent mechanisms responsi-
ble for ambient noise; one occurs before the onset of wave breaking, and one

after. Kennedy and Goodnow (1990) also reported a wind speed dependence
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Figure 1.1: Ambient noise spectrum and source mechanisms. From Wenz
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on the vertical directionality of ambient noise. For wind speeds exceeding the
wave breaking threshold, the noise field exhibits a vertical directional spec-
tra consistent with a distribution of dipole sources (40-4000 Hz) near the sea
surface.

In Urick’s review of ambient noise in the ocean (1984), the wind—
dependent processes hypothesized to contribute to surface noise generation
after wave breaking includes wind turbulence coupled into surface waves, pres-
sure deviations due to surface motion, nonlinear wave-wave interactions, and
spray and cavitation. Furduev (1966) suggested that noise emissions from
cavitating bubbles might be a key source near the sea surface. The driving
mechanism for cavitation is theorized to be the changing pressure under surface
waves which results in bubble growth by ‘rectified diffusion’ and a subsequent
violent collapse. Bubbles‘ entrained by impacting spray from whitecaps are
also thought to contribute to the noise spectrum (Wilson, 1980); this view is
supported by the experimental data reported by Morris (1978).

Kerman (1984) correctly surmised that densely populated bubble for-
mations created by breaking waves played a significant role in ambient noise
production for frequencies above 50 Hz. Furthermore, he speculated that there
are two regions of low frequency wind dependence, one preceding to and one
following wave breaking, indicating the existence of separate source mecha-
nisms. He recognized that the popular forcing mechanisms of the day (cavita-
tion, spray, large amplitude non linear forcing at frequencies below the bubble
resonance, and simple volume pulsations) were inadequately formulated. Nev-

ertheless, he chose to model ‘weak cavitation’—the below resonance forcing due




to large amplitude turbulent flow in transient bubble populations—as a can-
didate mechanism. Recently, however, Prosperetti and Lu (1988) discounted
the likelihood that cavitation is a natural source mechanism since the extreme
pressure fluctuations required are unrealistic.

For frequencies above 10 kHz, the wind dependent noise is due, in part,
to single bubble resonant (volume) pulsations driven by the bubble formation
process and by turbulent flow?. However, in the frequency range 200 to 2000 Hz
the oscillation of single bubbles is not thought to significantly contribute to the
ambient noise spectrum since such bubbles would have to approach diameters
greater than 3 mm. Although bubbles of this size do appear beneath breaking
waves, they are extremely buoyént and rise to the surface quickly (Lamarre
& Melville, 1992). Furthermore, the bubble dist_ribution is thought by some
to peak near 80 pm (Wu, 1981), which would seem to suggest that the role
played by single bubbles below 2000 Hz is minimal. During the period following
Knudsen’s initial measurements during WW-II until Urick’s review ‘of ambient
noise in the sea in 1984 the structure of the noise spectrum (20 to 2000 Hz)

was well documented, but not well understood.

2The resonance frequency, in Hz, of an air bubble in water at atmospheric pressure is
given approximately by f, = 3.2/R,, where R, is the bubble radius in m.



1.2 The Theory of Low Frequency Ocean

Ambient Noise: A Paradigm Shift

The understanding of natural source mechanisms of ambient noise recently
became a subject of renewed interest in the ocean acoustics community. This
began at the Fall 1985 meeting of the Acoustical Society of America (ASA), at
which point the current base of knowledge was reviewed. Since then, no less
thaﬁ 12 sessions devoted to ambient noise processes have been convened at
the ASA. In addition, a trio of international symposiums entitled Sea Surface
Sound were conducted in 1987, 1990, and 1994. These were multi-disciplinary
efforts attended primarily by hydrodynamicists and acousticians who had a
common interest in addressing the unresolved issues related to natural source
mechanisms of surface generated noise in the ocean. By far, the most contro-
versial topic of discussion at these meetings was the role played by bubbles
and the collective oscillations of bubble ensembles in wind dependent ambient
noise generation at frequencies below 2000 Hz.

Collective oscillations is not a new idea. In fact, Wood (1941) was
among the first to develop a model describing this behavior at frequencies
well below the bubble resonance. Over the years, many laboratory studies
were conducted which confirm its utility (Silberman, 1957; Fox et al., 1955;
Karplus, 1958; Gouse & Brown, 1964; Ruggles, 1987; Lamarre & Melville,
1994; Cheyne et al., 1995). In a two—phase mixture of air bubbles in water, and

for frequencies well below individual bubble resonance, the effective mixture




density and compressibility are described by

pe = (1=B)p+Bpe (1.1a)

ke = (1= P0)k+ Prg _ (1.1b)

respectively. Here, 3 is the void fraction or ratio of gas volume to total vol-
ume (often expressed as a percentage); p, K, pg, and &, are the densities and
compressibilities of the liquid and gas, respectively. The sound velocity in the

mixture is given approximately by

c. & (peke)™? m \/vP./B(1 - B)p, (1.2)

which follows directly fromu the equation of state (Wood, 1941). Thus, for
a mixture having void fraction B = 1072, the effective sound speed is ¢, =
100mys; significantly lower than the speed of sound in the gas! In Chap-
ter 2, the interesting subject of sound propagation in bubbly mixtures will be
discussed more formally, including the dispersive characteristics.

The question that remains is: how might an isolated, densely populated
bubble-water mixture (i.e., a bubble cloud) contribute to the low frequency
noise spectrum? For the purposes of this study a bubble cloud is defined as
a mixture of air bubbles and water where 8 ~ 1072 to 10‘5,‘is assumed to be
spherical and has a radius a < 1m. It is entrained beneath the surface via
a breaking wave and persists for a period of only a few seconds (Monahan
& Lu, 1990). Is it plausible that such a spherical cloud, characterized by an

effective density and sound speed as given by the collective oscillations model,



will radiate sound and resonate at its fundamental eigenfrequency given by
the simple approximate expression (Carey & Fitzgerald, 1993; Carey & Roy,

1993; Roy et al., in press)

1 3vP,

U~ gral BO= B)p

? (1.3)

For example, a spherical cloud of radius a = 0.1m, possessing void fraction
(3 = 1072, will resonate at approximately 274 Hz. This will be shown explicitly
in Chapter 3, and is true regardless of the bubble size distribution, provided
that the resonance frequency of the largest bubbles is much greater than the
acoustic (driving) frequency.

The acoustic forcing which excites the low frequency modes of a bubble
cloud is thought to be individual bubble formation and turbulent flow (Oguz,
1994). As stated by Longuet-Higgens (1993):

“Each bubble, when it is formed, emits a short acoustical pulse

lasting for a few milliseconds only—a kind of birth yell. In listening

to underwater sound at these frequencies we are, it appears, hearing

a chorus of such birth yells.”

The so called ‘birth yell’ is in fact a damped-resonant volume oscillation.
Since no sound of finite duration can be a pure tone, a short duration pulse
is composed of a broad spectrum of frequencies which in turn excite the low

frequency eigenmodes of the cloud.
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1.2.1 Experimental evidence of low—frequency noise

production by bubble clouds

Several laboratory measurements of the sound produced by bubble clouds have
been performed in recent years. Some were conducted using continuoﬁsly rising
bubble columns with the goal of confirming that the collective oscillations
model could be used to explain the low—frequency sonic emissions. Others
were conceived with the notion that breaking wave occurances are discrete,
transient events that entrain large amounts of air, and therefore might explain
the low—frequency bursts of sound observed in the ocean.

Yoon et al. (1991) conducted a laboratory experiment in which a cylin-
drical bubble column was generated by an array of hypodermic needles located
at the bottom of a fresh water tank. The peak low frequency acoustic signa-
ture from the bubble column (260 to 550 Hz) matched very well the theoretical
frequencies predicted by the bubble cloud model of Lu et al. (1990). Similar
modeling and measurements by Koller and Shankar (1993; 1994) have shown
that the pressure field outside the bubble mixture was, however, evanescent
rather than oscillatory.

Nicholas et al. (1994) conducted an experiment with an artificial cylin-
drical bubble cloud bounded at the top and bottom by pressure release sur-
faces. In this study, a well controlled, continuously rising cylindrical column
of bubbles was produced in a freshwater tank and the higher order radiation
modes were found to be in good agreement with the collectively oscillating
bubble column model presented in of Lu et al. (1990) and in Commander

and Prosperetti (1989). This was followed by an experiment involving bubble
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columns created in salt and fresh water (Roy et al., 1991), with special care
taken to insure that the column dimension and void fraction was constant in
the two experiments. Although the relative bubble size distributions differed
significantly, the peaks in the noise spectrum generated by fresh and salt water
columns were virtually identical provided the void fraction and column dimen-
sions were held fixed. This confirms the notion that it is the effective sound
speed (i.e., void fraction), not bubble size that dictates the low—frequency
response of a bubbly éssemblage.

Kolaini et al. (1993) measured the low frequency acoustic resonance sig-
nature of bubble plumes generated by dropping masses of water from cylindri-
cal containers into a largé tank and a pool. They observed that low frequency
sound was generated the instant that a large “substructure” detached from
the plume. Their observations showed that the substructures were spherical
regions of very high void fraction and they demonstrated that the lowest reso-
nance frequency would match the measurements if the mean void fraction was -
assumed to be approximately 40%.

Kolaini followed the laboratory experiments with a series of well con-
trolled field experiments in which a cylindrical container of water was released
into a freshwater lake and the sea water of Puget Sound (Kolaini et al,
1994). Again they observed a damped resonant oscillation as spherical re-
gion ‘pinched-off’ from the cloud. Unlike Roy et al. (1991), they found that
the resonance frequency of the newly formed plumes was slightly increased
in the marine environment compared to the fresh water of the lake. This, in

part, was due to a 10-15 % smaller plume radius in the Puget Sound experi-
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ment, but also likely due to slight differences in the void fraction, which was
not accurately measured. In addition, the salt water emissions were typically
3-4dB lower, which was attributed to the presence of significantly smaller ra-
dius bubbles. The radiation pattern was dipole, which is consistent with the
notion that the source is a compact monopole in the vicinity of a pressure
release surface.

Finally, recent measurements by Carey et al. (1993) on the sound gen-
erated by a tipping trough in both fresh and salt water have shown fhat the
bubble plumes radiate sound at low frequencies in a manner that was consis-
tent with theory and that the resonance frequency was in agreement with a
modified Minneart expression (Eq. 1.3) first derived by Carey and Fitzgerald
(1993). While the aforementioned experimental measurements were conducted
in the near field, this experiment has the distinction of being the first in which
the sound radiated by a controlled bubble plume was measured in the far field,
with known volume fractions and salinity concentrations. In reverberant tanks,
they found that the frequency of oscillation did not change between fresh and
salt water. This was determined to be due to the fact that the plume had
similar dimensions and void fractions in both cases. It was clear from their
measurements that the bubble population was different in fresh and salt water,
thus once again it is concluded that the low frequency acoustic characteristics
of a bubble cloud are dictated by the void fraction, and not the individual
bubble dynamics. The main difference observed between fresh and salt water
was in the level of the acoustic radiation. It was found that the salt water case

had lower levels due to the higher proportions of small bubbles, resulting in
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greater surface area and correspondingly greater attenuation.

Taken as a whole, these studies conclude that reasonably densely pop-
ulated bubble assemblages radiate sound at frequencies much too low to be
described by the resonance of individual bubbles. Furthermore, the theoret-
ical models achieve good agreement with the laboratory studies using a well
established collective oscillations model. In such a case, the sound speed at
low frequencies is reduced (primarily depending on the void fraction) and the
fundamental frequencies of the cloud or plume are determined by the eigen-
modes of the system—that is, the resonance frequency is based on the effective
sound speed (i.e., 3) and length scales of the cloud. At the fundamental res-
onance frequency, these assemblages possess a characteristic dimension which
is less than the acoustic wavelength and can thus be regarded as acoustically
compact. In such a case, the source is well approximated in the far field as
a monopole source. When placed near a pressure release surface, the radia-
tion from a monopole source takes on a dipole characteristics (i.e., using the
method of images). The most important parameter in describing these phe-
nomena is the void fraction. Unfortunately, there is little quantitative data

reported on the void fraction of clouds and plumes near the sea surface.
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1.3 Breaking Waves, Bubble Clouds and
Low—-Frequency Ambient Noise

In the deep ocean, it is well known that the propagation of surface waves obeys

the following dispersion relation (Lighthill, 1975):
0% = gK (1 + 7K?), (1.4)

where Q is the radian ocean wave frequency, K is the wave number of the
traveling wave, g is the acceleration of gravity, and 7 is the ratio of the surface
tension to the product of g and the water density.

After sufficient periods of high winds, the sea reaches an equilibrium
state. The wave height and frequency spectrum can then be predicted by one
of several wind-speed based empirical models (Pierson & Moskowitz, 1964;
Donelan et al., 1985; Hasselman et al., 1976). Waves of this nature are wind
driven, and build up momentum until at some point they break, forming white—
caps and entraining air beneath the surface. The onset of this wave breaking
process typically begins at wind speeds exceeding U > 6 my/s.

It is not the instantaneous wind speed, but rather the significant wave
height that characterizes the sea state. The Beaufort scale of wind force (Ta-
ble 1.1) describes the sea state in terms of significant wave height and charac-
teristic appearance (Allen, 1983). The first column lists the Beaufort number,
the second the sea state, the third column lists the wind speed required to

build up the sea (over a period many hours), and the last column lists the
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mean probabilistic wave height. A wind of a given Beaufort force will produce
a characteristic appearance of the sea surface provided that it has been blow-
ing for a sufficient length of time, and over a sufficiently long fetch. The term
fetch refers to the length of the stretch of water over which the wind acts on
the sea surface from the same direction (the longer the fetch, the greater the
disturbance for a given wind speed). Small breaking waves (or breakers) begin
to appear on the surface of a fully developed sea at the critical windspeed
(U ~ 6mys). At this point, the Beaufort wind force is 3 and sea state is 2.
As the wind speed increases, the disturbances at the sea surface become more
frequent and more violent. For sea states between 3-5 a significant number of
white caps appear, followed by sea spray.

According to a model proposed by Monahan and Lu (1990), bubble
assemblages created by breaking waves fall into three distinct categories de-
termined by their lifetimes, volume fractions, and penetration depths. The
bubble ensembles are known as Type-A, Type-B, and Type—y, and are sum-
marized in Table 1.2 and described below. First, as a wave breaks, a white—cap
appears on the surface marking the birth of a Type-A plume. Bub’bles in this
densely populated formation penetrate to depths near 0.25m, maintaining
contact with the surface in an area of approximately 0.5m?. Typical void
fractions for these plumes are on the order of a 1072, but values exceeding
this by an order of magnitude have been observed (Lamarre & Melville, 1994;
Farmer, 1992).

The Type-A plume quickly decays into a Type-B white—cap in roughly

0.5s and is indicated by the presence of a white foamy patch on the sea surface.
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Type | depth (m) | Area (m?) | Void Fraction | Life time
A 0.25 0.5 <0.10 0.5 s
B 0.5 up to 1 10~* 1073 4.0 s
7y 10 10 0(107%) 10-100 min

Table 1.2: Characteristics of bubble ensembles following a breaking wave
event.

Continued momentum transfer forces the bubbles beneath the whitecap to
depths on the order of 0.5m, as the now detached cloud continues to grow in
size. In the next 4s, the void fraction of this densely populated.cloud decreases
to the order of 1074, occupying on the average a cross sectional area of 1 m?.
The decrease in void fraction is due to the increase in cloud volume and the
loss of larger bubbles rising to the surface.

The larger bubbles in the cloud continuously rise to the surface, leaving
behind smaller bubbles which can be stabilized by surfactants (chemical pollu-
tants) and convected to depths on the order of 10 m by a mechanism known as
Langmuir circulation®. This formation is known as Type—y, or tenuous assem-
blage, and is noted for void fractions less than 107 and lifetimes of minutes
to hours at a time. Eventually, the ‘stabilized’ bubbles dissolve into solution.

The distinction between clouds and plumes is clearly demarcated by
their respective lifespans, penetration depths, void fractions, and attachment
to the surface. That is, plumes are relatively small, densely populated ensem-
bles attached to the surface and lasting only for brief periods of time. While
clouds, on the other hand, are detached from the_ surface, have lifetimes on the

order of 4s, void fractions in the range 107° to 1072, volumes less than 1 m3,

3Langmuir circulation is a down welling turbulent current aligned with the wind which
convects micro~bubbles to depth (Thorpe, 1984).
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and penetration depths on the order of 1m. The tenuous assemblage has a
length scale on the order of 10m, an extremely low void fraction (8 < 107°),
and can persist for hours at a time. In this work, the primary concefn is
with the relatively densely populated, short-lived bubble clouds, and not the
surface—attached plumes or tenuous assemblages.

In the introduction of Lamarre’s dissertation (1993) is a compilation
of experimental efforts aimed at obtaining the bubble size and spatial distri-
butions in the laboratory and in the sea. From his review, it is clear that
the typical bubble size in the ocean is less than 100 m, and that the distri-
butions obey an exponential depth dependence. While, bubbles larger 1 mm
radius have been observed in the ocean (Lamarre & Melville, 1992), buoyancy
forces cause them to rise to the surface quickly and thus their contribution to
the noise spectrum (< 2000 Hz) is limited.

As previously noted, the speed of and attenuation of sound are affected
in a dispersive manner by the presence of bubbles. This is due to the increased
compressibility of the mixture while the density of the mixture remains near
that of water. In such a mixture, a phenomenon known as collective oscillations
can occur in which the sound speed can be lowered dramatically, even to
values below that of air, depending on the void fraction. For example, for a
void fraction of 107, the speed of sound is reduced to about 170my/s. Also,
increased attenuation due to the presence of bubbles in the mixture is observed.

In Lamarre’s (1994) recent research effort, the speed and attenuation
of sound were measured beneath breaking waves using a pulse propagation

delay technique. The sound speed was estimated by dividing the propagation
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distance by the transit time of the pulse. The distance between the source
and receiver was 1.2m and the measurements were performed at four depths
(0.25 m vertically spaced stations just below the surface). They typically >ob—
served decrements in the sound speed on the order of 100 m/s and a maximum
deviation of 800 mys, all attributed to the presence of bubbles. The sound
speed decrements were found to decrease with depth in accordance with the
bubble population density. Although this effort reported decrements in the
sound speed in excess of 800mys, it is likely that a closer spacing between
the source/receiver pairs would provide a more highly localized result‘, That
is, when the distribution of bubbles is not uniform across the 1.2m separa-
tion (suppose one had a smaller densely populated bubble cloud of dimension
0.25m) the measurement would likely be biased to sound speeds closer to
the liquid and therefore would not yield an accurate result for the maximum
sound speed decrement in the bubbly region under a breaker. The difficulty
in performing this type of acoustic measurement is apparent since it must be
conducted at frequencies well below the bubble resonance frequency, which
limits one to relatively distant separations.

In a previous experiment, Lamarre and Mellville (1992) used a con-
ductivity probe to measure the void fraction, not the spund speed, beneath
breaking waves in the ocean and the laboratory. In their field experiment the
reported void fractions at six depths (equally spaced by 0.15 m beginning at the
surface) on the order of 1072, but at times exceeding 10~!. In the laboratory,
surface waves were propagated down the length of a narrow flume and made

to break above a single fixed—depth void fraction probe. Thus as the plume
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beneath the breaking wave travelled past the sensor a temporal image of the
localized void fraction was obtained at a particular depth. The probe depth
was varied and the measurement repeated for several more breaking events
which allowed them to construct a spatial and temporal image of the void
fraction beneath a wave. These images suggested that the laboratory plumes
were nominally hemi—cylindrically shaped. When the sensors were deployed
on a buoy in the ocean, void fractions in the range 1072 to 10~ were typically
observed directly beneath an actively breaking wave—in good agreement with
the sound speed decrements they later measured using acoustic techniques.
That the Type—A/B bubble assemblages described above are respon-
sible for the discrete bursts of low frequency (LF) sound has recenﬂy been
established by Hollet (1994) (see also Carey and Monahan (1990)). In this ex-
periment, an end-fired 32 element vertical array (3 nested subelements of 375,
750, and 1500 Hz) was deployed and pointed toward the surface and a land-
based video camera focussed on the same patch of the surface were used to
correlate visually observed white—cap breaking events with broad band sound
emissions below 1500 Hz. These sound bursts typically persisted for a few sec-
onds and then died out, presumably since no more bubbles were being formed.
Simultaneous acoustic and video measurements of breaking wave events
were reported by Farmer and Vagle (Farmer & Vagle, 1989). Using an omni-
directional hydrophone deployed 14m below the surface, and a sub-surface
video camera, they correlated sonic emissions as low as 50 Hz occurring si-
multaneously with visual observation of bubble cloud production beneath a

breaking wave. In order to produce sound at a frequency of 50 Hz, a bubble
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- radius of 6.4mm is required. These low frequencies are similar to those ob-
served radiating from the bubble clouds produced by the ‘tipping-trough’ of
Carey et al. (1993) and the bucket drops by Kolaini et al. (1994). A subse-
quent experiment by Vagle and Farmer (1992) made use of the ambient sound
radiated by a bubble cloud to precisely track single breaking wave events in
both space and time. Here, they utilized a self-contained freely drifting in-
strument platform deployed to a depth of 50 m and consisting of six receiving
hydrophone elements.

In a recent model proposed by Oguz (1994), the sound radiated by the
formation of bubble plumes beneath the sea surface is discussed. In this study,
Oguz presents an idealized geometry where the sea surface is taken as planar
and the bubble plumes are hemispherical. A fundamental feature of his model
is that the plumes were allowed to grow with time as the air entrainment takes
place, and thus the void fraction evolves as well. The acoustic forcing in the
mixture is achieved by broadband emissions from newly ‘birfhed’ bubbles in
the vicinity of the perfectly reflecting surface (Pumphrey & Ffowcs-Williams,
1990). This modeling effort results in noise levels that are comparable with
the reported field measurements of Hollet (1988; 1994) while using a minimal
amount of experimental input (i.e., only the bubble size distribution, mean
void fraction, and wind speed need to be known), further evidence that the
collective oscillations model is on a strong footing.

Currently, the notion that bubble cloudsAcontribute to the production of
low frequency ambient noise is widely accepted. The recent field measurements

of Hollet and of Farmer and Vagle, when considered along with the good
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theoretical agreement of the laboratory fesults of Carey’s tipping-trough and
Kolaini’s bucket—drop experiments suggest that the bubble clouds generated
beneath breaking waves are a fundamental contributing source of natural low
frequency noise in the ocean. It is interesting to note that there was no mention
of low frequency noise production by bubble clouds in Urick’s review of ambient
noise in 1984. That this paradigm shift in perception occurred within a ten
year span and continues to this day* is remarkable and forms a good part of

the motivation for the work described in this thesis.

1.4 Sea—surface scatter

A related field which has also gained renewed interest in the last decade is
that of low—frequency sea surface scattering and reverberation. Scattering can
be regarded as radiation from a ‘source’ which is driven by an incident wave
rather than by a local external generator. The scattering sources near the
ocean surface include the surface itself, fish, resonant bubbles, and perhaps
bubble assemblages beneath breaking waves. Reverberation is the totality of
sound energy scattered from a myriad of inhomogeneities present in the sound
beam as well as boundaries along its path. Examples of reverberation inciude
volume and surface reverberation. Volume reverberation is defined as the
sound returned by scattering centers in a volume of the sea, whereas surface

reverberation is the sound returned by scattering centers at or near the sea

4The author in the spring of 1995 participated in an experiment (SWELLEX-4) with
participants from the U.S. Naval Research Laboratory (NRL) and the Scripps Institute of
Oceanography designed to measure the sound produced by breaking waves at frequencies
below 400 Hz.
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surface. The strength, or efficiency, of these scatterers would be expected to
be a function of environmental parameters: wind velocity, sea state, whitecap
coverage, temperature, fish populations, etc. The primary distinction between
volume and surface reverberation is that surface reverberatibn is regarded as
that part which is dependent on the sea state.

. Many fundamental research programs in sea surface scattering and re-
verberation were carried out in the years since WW-II. One should keep in
mind these so called fundamental efforts were not fundamental in the usual
scientific context. For the most part, they were designed to accumulate infor-
mation useful in the fields of anti-submarine or pro—submarine warfare rather
than aimed at locating and understanding the physical factors which result in
the observed spectrum of sea surface scatter. Regardless, much of the work
was both seminal and pioneering (NDRC, 1946).

Among the first efforts at understanding the theory of sea surface scatter
were undertaken by Eckart (1953). He considered the scattering of sound
from a rough pressure release surface using the Helmholtz—Kirchoff integral
(borrowed from the optics community), while neglecting the contribution of
point scatterers located near the sea surface (i.e., bubbles and biologics). The
quantity g = exp(—2khsing,), is the amplitude reflection coefficient of a
rough surface; the expression 2khsin ¢, is known as the Rayleigh parameter,
where k is the sonic wave number in water, h is the rms wave height for a
gaussian distributed sea surface, and ¢, is the surface grazing angle. Thus,
for acoustic wavelengths greater than the scale of roughness, the scattering

strength of the sea surface is predicted to decrease with decreasing frequency.
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For short wavelengths, the surface scattering strength is relatively independent
of frequency (incoherent scattering dominates). This work was an extension
of the problem first discussed by Lord Rayleigh (1877) in which the scattering
of sound from a sinusoidal corrugated surface was theoretically investigated.
Urick and Hoover (1956) discussed the backscattering of sound from
the sea surface, its measurement, causes, and application to the prediction of
reverberation levels. Smooth curves representing their measurements are de-
picted in Figure 1.2. Their experiments, performed at 60kHz, indicated that
for grazing angles below 30°, the scattering strength was relatively flat (inde-
pendent of grazing angle), but increased with increasing wind speed. Above
about 50°, all wind speed cases showed an increasing scattering strength with
grazing angle, and at normal incidence the scattering strength decreased with
increasing wind speed. They contend that at low grazing angles and for wind
speeds suﬂicient to cause wave breaking, the flatness of backscattering curves
suggests that the roughness of the sea surface alone is not the cause of the
scattering. They further speculated that the natural formation of bubbles or
bubble layers play a role in the scattering of sound from the near surface layer,
but at the time evidence of such a mixture layer had not been established.
Chapman and Harris (1962) used explosive charges to illuminate the sea
surface and measured the surface backscatter at grazing angles between 15° to
40° in the frequency range 400 to 6400 Hz. The measurements were made over
a 52 hour period in which the wind speed varied from 0 to 15 m/s; the sea state
varied from 0 to 6. For wind speeds less than 7.5 m/s they observed general

agreement with Eckart’s predictions; that is, the backscattering strength was
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Figure 1.2: Smooth curves of the backscatter from the sea surface as a func-
tion of windspeed and grazing angle at 60 kHz (Urick & Hoover, 1956). They
speculated that bubbles, or a bubble layer, were responsible for the increase
in the scattering for increasing wind speed curves at the lower grazing angles.

From McDaniel (1993).

relatively independent of frequency for low wind speeds. However, as the wind

speed increased, high backscattering strengths were measured. The data were

fitted to an empirical relation based on the Eckart model and referenced to a

surface grazing angle of 30°:

¢,
0

SS = 3.3nlog 3¢ — 4.24logn + 2.6, (1.5)
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where n = 158 (v f %)—0'58; v is the wind speed in knots; f is the frequency
in Hz; and ¢, is the grazing angle. They conjectured that the anomalously
high returns were due to a subsurface layer of scatterers, probably of biological
origin.

Because of the possible biological contamination, a follow up experiment
was performed by Chapman and Scott (1964) in order to measure the sea
surface backscatter over an extended range of frequencies (100 to 6400 Hz)
and grazing angles (¢, < 80°). In this experiment, the wind speed ranged
from 1 to 13m/s with a mean sea swell of 1.8m. For the lower wind speeds,
the scattering returns were consistent with sea surface scatter—that is, the
scattering of acoustic radiation from a surface whose scale of roughness is
appreciably greater than the wavelength of the incident sound. At the lower
wind speeds (i.e., smaller significant wave heights), the data was not found to
be dependent on frequency, consistent with Eckart’s surface scattering model.
Again, however, the higher wind speed cases showed general disagreement with
the surface scattering theory.

The results predicted by Eq. (1.5) cannot be explained by the conven-
tional perturbation or composite roughness models for surface backscatter,
especially at shallow grazing angles and low frequencies where the measured
scattering strengths are 10 to 100 times stronger (McDaniel, 1993), and it is
not likely that advances in the rough surface scattering theories will bridge the
gap. Evidently, an unaccounted source mechanism for sea surface backscatter
exists, and it appears that this mechanism is present only for wind speeds high

enough to cause waves to break. Thus, bubble clouds, layers, and plumes are
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likely candidates.

1.5 Sea surface scattering: selected field
experiments

In the late 1980s and early 1990s a series of tests of low frequency sonar experi-
ments were performed (Critical Sea Tests, CST) in which one of the objectives
was to measure boundary scattering strengths at frequencies below 1000 Hz
aﬁd to investigate the dependence on various acoustical and environmental
properties. One of the motivations to perform these tests was to address the
observations made by Chapman and Harris (1962), hereafter CH. Ogden and
Erskine (1994), like CH, used SUS (explosive) charge sources to insonify the
sea surface during periods in which the sea state varied from 0 to 4.5. They
performed direct path surface scattering measurements and found general dis-
agreement with the CH empirical model for grazing angles between 10° to 30°
and for wind speeds varying between 1.5 and 14 m/s at a center frequency of
70 Hz. However, for a frequency of 930 Hz, a wind speed dependence similar
to the CH model was observed—particularly for the higher wind speeds.
Their results, illustrated in Figure 1.3, can be summarized as follows:
For relatively calm seas at all frequencies and for rougher seas at the lower
frequencies, the scattering strengths are reasonably well characterized by per-
turbation theory in which air—sea interface scattering is the dominant mecha-
nism (Thorsos, 1990). In the transition region, in which the whitecé,p coverage

of the sea changes from a few to commonly visible, the scattering levels are
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difficult to predict with any accuracy. Presumably, a competition between in-

terface scattering and the onset of scattering from bubble assemblages occurs.

At higher wind speeds and higher frequencies, the CH empirical formula is

found to be consistent with the field data. In this region, the frequency/wind

speed /grazing angle dependence given by Eq. (1.5) and calculated using per-

turbation methods are radically different, strongly suggesting that some other

mechanism plays a role.

Wind Speed (m/s)

No CST SUS data available above 13.5 m/s
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(1994).
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In the Gulf of Alaska, Gauss et al. (1993) measured surface scattering
for a range of significant wave heights (1.5 to 5m) and very low grazing an-
gles (between 1.5 to 3.5°) using a high resolution receiving array limited to
frequencies below 1000Hz. A vertical array consisting of 10 low frequency
and 10 high frequency sources designed to emit 80 Hz bandwidth tones cen-
tered at 250 Hz, and 170 Hz bandwidth tones centered at 915 Hz, respectively
was deployed at a depth of 150 m. They reported strong evidence of volume
scattering (believed to be salmon) in the lower frequency band, and surface
scattering for the upper frequencies. However, in the upper band, they also
observed prominent, temporally discrete backscatter returns from the surface
lasting less than 45 s (the scan repetition rate). The spatial character of these
signals revealed strong, isolated features less than 10m in size. Given the
sea state, these transient scattering results are consistent with the spatial and
temporal properties of newly formed bubble clouds such as those observed
by Farmer and Vagle (1989) and Lamarre and Mellville (1992), and with the
notion that such clouds might contribute to the scattering.

Adair and Huster (1992; 1993) managed to image the scattering strength
of the upper 5m of a large patch (~ 1km?) of the ocean surface using a long
towed horizontal line array and conventional wideband processing techniques
in an effort to characterize near—surface reverberation at wind speeds exceed-
ing 7my/s and for a grazing angles ﬁear 10°. Two types of sources were used:
SUS charges, which yield high signal-to-noise images with 5 m? spatial resolu-
tion; and conventional projectors with higher repetition rates (6.7 and 20.1s).

Conventional sources were employed to achieve intermediate range resolution
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on the order of 50m?. The SUS experiment should be able to resolve and
track the scattering from tenuous bubble plumes, which should be extended in
space and persist for periods up to tens of minutes.

During periods of no breaking wave activity, they observed isolated
bright targets consistent with the scattering strength, frequency response, and
migration patterns expected from salmon (see Figure 1.4). Similar bright
spots, although more numerous and more broadband, appeared during the
high sea state tests. These are believed to be due to scattering from subsurface
bubble ensembles since the images showed no ping—to—ping correlation (their
lifetimes were less than 10s). The short lifetimes of the bright echoes are
consistent with scattering caused by relatively short lived bubble clouds having
void fractions on the order 10~* to 10™2 and sizes on the order of 1 m or less.
Although features greater than 100 m are shown on the image in Figure 1.4,
they reported no long lived, high target strength events.

In a high frequency (3 to 80kHz) monostatic scattering experiment
conducted during wave breaking activity in the North Sea, Niitzel and Herwig
(1993) and Niitzel et al. (1994) observed normal incidence backscatter return-
ing from the sea surface arri;\fing in temporally and spatially discrete ‘clumps.’
The data was corrected for arrival time differences of the individual echoes due
to the varying wave heights, strongly suggesting‘that bubble clouds were the
dominant scattering targets. At 40kHz, and for a wind speed of 8.5 mys, the
backscatter measurements indicated the presence of transient bubble clouds
penetrating to depths of 2m; at 10mys, the clouds penetrated to 5m; and at

14 mys, scattering from a continuous layer of bubbles was observed down to
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6 m and transient plumes at depths of 10 m. Although the acoustic frequencies
used during this experiment are beyond the scope of the present study, the

reported observations are, nevertheless, enlightening.

1.6 Sea surface scattering: modeling efforts

Prosperetti et al. (1993) and Sarkar and Prosperetti (1993) have modeled
sub—kilohertz acoustic backscatter at shallow grazing angles (< 20°) from
hemispherical, hemicylindrical, and hemispheroidal bubble plumes attached
to a idealized plane sea surface. In their calculations, they obtain quantita-
tive agreement with the CH curves using a wind speed dependent white—cap
coverage ratio to populate the surface with a density of plumes. The plumes
they examined had a radial footprint on the sea surface of 0.5m, and void
fraction in the range 1072 to 10~!; in the hemispheroidal case the extent of
the cloud depth was made to vary by 1-5 radii. Both of these studies were
based on a relatively simple acoustic propagation model for a bubbly liquid;
a model that has been found to be in excellent agreement with the available
data (Commander & Prosperetti, 1989; Lu et al., 1990; Yoon et al., 1991;
Silberman, 1957; Cheyne et al., 1995).

In Henyey’s (1991) recent study, the well known Born approximation (a
weak scattering theory) was used to estimate the acoustic backscatter from the
larger tenuous bubble plumes (3 < 107°, depths and lengthscales on the order
of 10m, and lifetimes of tens of minutes to hours) beneath the sea surface.

In another study by McDonald (1991), vertically oriented low—void fraction
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" bubble plume cylinders with rigid boundary conditions were modeled. While
both of these efforts were able to show general agreement with the CH empirical
equation, they failed to obtain the precise grazing angle dependence obtained
by CH. Furthermore, it is not clear, given the available evidence, that any
of the models which demonstrate agreement with the Chapman—Harris curves
are accurate.

Many investigators currently believe that the global features of the fre-
quency and grazing angle dependence of sea surface backscatter are more
closely influenced by the tenuous (low—void fraction) clouds, which occupy
a greater fraction of the surface for longer periods of time. This position is
not disputed here, for it is to a large extent based on the result of assump-
tions regarding the statistics and anatomy of oceanic bubble clouds. However,
observations of long term, isolated scatterers have not been measured acousti-
cally as would be expected from a tenuous bubble distribution. It seems clear
that the high—sea state surface scattering observations that are correlated with
spatially and temporally discrete high target strength scatterers (i.e., “spiky
returns”) are best modeled using short-lived, near surface bubble clouds. Such
clouds might possess length scales ranging from 0.1 to 2m, and void fractions
ranging from 1073 to 1072. They would exist on the order of 10 seconds at
depths ranging from just below the surface to 8 m. Is it possible for such small,

shallow clouds to generate sub-kilohertz target strengths® in excess of -5 dB?

5By definition, a 1 m~diameter perfectly reflecting sphere has a target strength of -12 dB.
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1.7 Resonance scattering from bubble clouds

Substantial laboratory and field evidence suggests that acoustically compact
(ka < 1), high void fraction bubble clouds oscillate collectively. When excited,
these clouds radiate low—frequency sound that possesses spectral features dic-
tated by the normal modes of the cloud; they scale with the cloud dimensions
and the mixture sound velocity. It therefore seems reasonable to aséume that
such a cloud would scatter sound in a similar fashion. This notion was vigor-
ously promoted in the works of Caréy et al. (1985; 1988; 1993) and Prosperetti
et al. (1985; 1988b; 1988a; 1990; 1993). However, until recently this view
had not been experimentally verified for sub-kilohertz frequencies. This dis-
sertation discusses an experiment, and the associated modeling effort, which
demonstrates that acoustically compact bubble clouds are effective scatters of
sound.

The so called “Lake Seneca Experiment” took place in the summers of
1989 and 1990 at the NUWC fresh-water sonar test facility at Lake Seneca,
NY. It was a multi-institutional effort, with contributions from researchers at
NUWC, NCPA, BB&N, and the University of Connecticut®. The purpose of
this experiment was to measure the frequency-dependent backscatter from a
well-characterized bubble cloud in the absence of boundaries and for known
propagation conditions. This experiment was not designed to duplicate the
oceanic environment. Rather the effort was designed to obtain data to test

and validate the collective oscillation model hypothesis. The bubble cloud

6NUWC = Naval Underwater Warfare Center; NCPA = the National Center for Physical
Acoustics at the University of Mississippi; and BB&N = Bolt Berenek and Newman
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was generated using a transiently-vented compressed air source submerged
to 91m. The rising bubble cloud was insonified using a highly-directional
parametric array sound source. Although data was obtained for frequencies
ranging from 250 Hz to over 10kHz, the interest in this effort is primarily in
the scattering response of bubble clouds at sub-kilohertz frequencies, where
low-frequency sonar systems operate, and much of the existing field data has
been obtained. The estimated cloud in situ properties were known accurately
enough to effectively model the scattering response for frequencies near the
lowest—order (monopole) resonance. At these low frequencies, the cloud is
acoustically compact, and the details of its shape are unimportant. In essence,
the cloud behaves like a volume scatterer and the resonance response is that
of a monopole or equivalent pulsating sphere. In this limit, the monopole
resonance frequency and target strength are described by simple analytical
expressions that effectively highlight the underlying physics and facilitate ex-
perimental confirmation.

For the sake of clarity, this dissertation is subdivided into the three
parts. Part-I offers a development of the collective oscillations model and
the scattering from a high volume fraction bubble cloud in the low—frequency
limit, where the resonance of the individual bubbles are much higher than the
driving frequency and the effective medium approximation is valid. Following
this development, which is derived from the classical literature, theoretical
expressions for the frequency—dependent acoustic backscatter from a spherical
bubble cloud in the free field are presented. It is important to note that Part I

of this dissertation is devoted solely to the modeling of bubble cloud scattering
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in the free field. In Part II, the Lake Seneca bubble cloud scattering experiment
and associated analysis is described and compared with the model. Finally in
Part III, a model of the low—frequency monopole scattering from a bubble
cloud near the sea surface is presented. Using the method of images, the
predicted low—frequency backscatter target strength is computed as a function
of grazing angle, frequency, and wind speed. Once again, the low—frequency,
acoustically compact (monopole) scatterer assumptioh results in expression
for which the underlying physics becomes evident. Trends in the calculations
are described and comparison is made with field measurements of Adair and
Huster (1992; 1993).

Several tacit assumptions will be made in the development of the mod-
els herein. First, the bubble cloud is spherical and consists of a mean void
fraction mixture. That is, the boundaries of the cloud are well defined, and
the distribution of bubbles within the sphere is uniform. Furthermore, the
cloud is embedded in a fluid free of other inhomogeneities (i.e., the presence of
a bubble layer or other clouds will not be considered). The bubbles, and the
cloud, are fixed both temporally and spatially. Although these assumptions
are nonphysical from an oceanographic standpoint, the goal here is to consider
the scattering response from a single cloud beneath the sea surface, and thus
the ‘ideal’ case will be entertained.

The goal of this dissertation is not to resolve the discrepancies between
the sea surface scattering models and the field measurements. Rather, the
interest is in the physics of scattering of sound from an acoustically compact

bubble cloud both in the proximity and in the absence of the sea surface. The
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contribution due to scattering from an ensemble of bubble clouds will not be
considered. It is a fact that bubble clouds and plumes are produced at the
sea surface during wave breaking activity. It is also well established that the
generation of these clouds releases a significant amount of acoustic energy into
the ocean concentrated in the frequency range 20 to 2000 Hz. Is it plausible
then that the presence of these clouds near the sea surface contributes to the

overall backscatter observed during wave breaking?
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Part 1

Acoustic scattering from bubble
clouds in the absence of

boundaries: Theory
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| Chapter 2

Pfopagation of sound in a

bubbly mixture

2.1 Introduction

The propagation of acoustic waves in fluids is highly influenced by properties
such as absorption and scattering. In fact, for a two—phase fluid consisting of
water mixed with a sufficiently dense concentration of air bubbles, the sound
velocity is frequency dependent. This dependence is a consequence of the
marked change of the fluid’s natural compressibility when mixed with bubbles
(Brekhovskikh & Lysanov, 1991). It will be shown that for frequencies below
the fundamental resonance of the individual bubbles, the sound speed can
be lowered dramatically. This dependence is solely on the fractional volume
or void fraction of bubbles in the fluid (Wood, 1941). The physics behind

the lowering of the sound speed is that the bubbly region possesses a density
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close to that of the liquid, but a much greater compressibility. The free gas
establishes the compressibility, while the water provides inertia. If one recalls
that the sound speed in a fluid medium is proportional to the square-root of
the inverse product of these quantities, the physical basis for the sound speed

defect becomes obvious.

Two models will be considered. First, in the low frequency quasi-static
limit a model for the sound propagation in a bubbly fluid similar to that
originally proposed by Wood (1941) will be presented. He derived the mixture
sbund speed based on the assumption that bubbles pulsate isothermally; a
good approximation for extremely small bubbles driven at low frequencies. In
addition, Wood neglected attenuation.

A second, dispersive model will be presented which spans a much greater
frequency range (above and below the bubble resonance frequency) and ac-
counts for energy losses through viscous, thermal, and acoustic damping (Com-
mander & Prosperetti, 1989; Lu et al., 1990). The basis of the dispersion model
can be traced back to Spitzer’s early work outlined in the classic text Physics
of Sound in the Sea (1943). In his study, the bubbles oscillations were consid-
ered in the adiabatic limit. In the present work, the methodology presented
in Commander and Prosperetti (1989) will be followed. The bubble dynamics
are treated rigorously so that both the damping ‘constant’ and the polytropic
exponent of the gas in the interior of the bubble are frequency dependent.
In both cases the effective (i.e., mixture) properties of the medium will be

denoted by the subscript e.
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2.2 Sound speed in bubbly liquids — Low

Frequencies

In the quasi-static limit, the effective medium approximation is obtained by
applying an ‘order of magnitude’ analysis. Let p and p, be the liquid and
gas densities in a fixed suspension of gas bubbles in liquid; by suspension, it
is meant that there is no relative motion between bubbles and liquid. The
bubbles are assumed small and sparsely distributed, but sufficiently densely
populated on some macroscopic scale that they can be regarded as determining
the properties of a single phase continuum of density p..

Let 8 be the void fraction (or concentration) of bubbles (i.e., the ratio
of the total gas volume to the total mixture volume). The effective density is

defined by

p. = (1=B)p+PBps. - (2.1)

Because of the assumption of no relative motion, the mass of the gas in
a unit mass of mixture must be constant. The volume of unit mass of mixture
is 1/p., the fraction of this volume occupied by bubbles is 8/p., and the mass

of gas in this fraction is Bp,/p. (Crighton et al., 1992). Hence,

Bes = Constant. (2.2)

Pe

Furthermore, suppose a quasi-uniform pressure exists everywhere within the

mixture. This assumption is valid only at very low frequencies—frequencies
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far below the bubbles’ resonance frequency, w,, as will be shown in Section 2.3.
As usual, the inverse square of the sound speed is given by the derivative of

the density with respect to pressure (Pierce, 1989),

2 _ g% %y ()P
= =By b+ Ay (2:3)
1-5 B dp

= +%+@—m@.

Now consider the following expression:

_ Bm)
ﬂpg - ( pe pe> (25)

which, upon taking the derivative with respect to pressure and using the defi-

nition given by Eq. (2.2) yields,

d dp.
5= ()% 26
and finally,
dp B dp. B
dp - 2.7
dp ((1 —ﬁ)p+ﬂpg> dp  pec? (2.7)

Substitution of the preceding equation into Eq.(2.4) gives, after some algebraic

manipulation,
1 dp. (-0} P p*c? + pic
el QPR Sl o R 1- — . 2.8
cz dp C2 + cg + /8( /8) ppSCQCE ( )

For the case where £ is not too large, or too small, the first two terms
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in Eq. (2.8) can be neglected, and the final term is approximated yielding the

effective sound speed

2
C2 ~ —%_Cg_ (29)

< B-p)p

since p,c2 K pc?.

The sound speed in the gas is ci = kP, /p, (Kinsler et al., 1982), where
k is the polytropic exponent of the gas, and P, is the ambient static pressure
in the fluid far from the mixture. For isothermal conditions, K = 1 and for adi-
abatic conditions k = 7, where - is the ratio of specific heats. A more rigorous
model is presented in the next section which describes the the frequency de-
pendence of the polytropic exponent explicitly. Substitute the gaseous sound
speed into Eq. (2.9) to arrive at the well known Wood expression (1941) for

the speed of sound in a bubbly mixture in the isothermal and adiabatic limits,

[ Py
_—_ﬂ(l o (2.10a)

VP
B(1=B)p

respectively:

o
X

(2.10b)

£
¢

It will be shown in Section 2.3, that these expressions are valid only for fre-
quencies well below the bubble resonance frequenc;y. It should also be noted
that for extremely small 3, this approximation exceeds the sound speed in the
host liquid—a limitation not imposed by Eq. (2.8). For example, in seawater

the Wood’s equation is valid for 8 > 3 x 107%; for smaller values it rapidly
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exceeds the liquid sound speed.

Figure 2.1 clearly illustrates one of the most remarkable features of
sound propagation through bubbly fluids. It is clear that the sound speed
in such a mixture of water and air can be much lower than either of the
constituents over a large range of f—as low as 20m/s. The calculation is
shov&n for both isothermal (x = 1) and adiabatic (k = 1.4) bubble behavior
using Eq. (2.10a) and Eq. (2.10b). The experimental data is from Karplus
(1958) and Gouse and Brown (1964) and obtained at frequencies of 0.5kHz
and 1.0kHz. Notice that these measurements correspond to the isothermal
model, indicating that the heat transfer from the liquia to the bubbles is

enough to maintain constant temperature inside the bubbles.

2.3 Sound speed in a bubbly medium —
dispersion

The concern here is with the frequency dependence, or dispersion, of sound
waves propagating in a two—phase mixture of air bubbles in water. Bubbles
are relatively high-Q simple harmonic oscillators and when driven at their
fundamental resonance are both strong scatters and absorbers of sound. Ac-
tually, sound is attenuated at all frequencies, but at resonance the attenuation
reaches a maximum. This indicates that the effective speed of sound has a sig-
nificant imaginary component which was not addressed in the previous section.
Furthermore, the response of the bubble is not uniform over the range of fre-

quencies spanning the bubble resonance frequency. When the acoustic forcing
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Figure 2.1: Sound speed in a bubbly liquid at atmospheric pressure for x =
1.0 and 1.4 as a function of the void fraction a. Experimental data from
Karplus (1958) and Gouse and Brown (1964) for frequencies of 1kHz (o),
0.5kHz (O), and extrapolated to zero frequency (A). From Brennen (1995).

frequency is lower than the resonance frequency, the a bubble will pulsate in
phase with the driving force. However, for frequencies exceeding the resonance

frequency, the oscillations occur out of phase, and thus the bubble ‘appears’

stiffer, leading to a corresponding increase in the mixture sound speed.

2.3.1 Theory

In order to understand how harmonic waves of any type propagate, one com-

monly solves a set of linearized conservation equations which ultimately lead
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to the Helmholtz or ‘wave’ equation. To follow in suit, first the conservation
equations for a bubbly mixture will be defined. To begin, consider a bubbly
mixture as an effective medium with density given by Eq. (2.1). Formally, the

void fraction is described by
dr [ 4
B(x,t) = 3 R’(a;x,t)f(a;x)da. (2.11)
0

Here, R is the instantaneous bubble radius at position x and time ¢ hav-
ing equilibrium radius a. The quantity f(a;x)da is the distribution function
of the number of bubbles per unit volume with equilibrium radius between
a and a + da. Note: for a monodispersed bubble population of radius R,,
f(a;x) = nd(a— R,), where § is the Dirac delta function, and 7 is the number
of bubbles per unit volume. For simplicity, the spatial dependence of the bub-
ble distribution is assumed to be fixed, but random in spacing. Furthermore,
the bubble distribution is assumed monodispersed so that
4

B = 37rR§n. (2.12)

The averaged continuity and momentum equations applied to bubbly

fluids having small 3 are (Commander & Prosperetti, 1989)

1 0P op

1-0‘0—273? +Vau = —é-t-, (2.13&)
Oou
p—é—{ +VP = 0, (213b)

where u and P denote the averaged center—of-mass velocity and pressure fields
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in the mixture. In order to consider the averaged quantities of the mixture,
| the nature of the interaction of sound waves with individual bubbles must be

determined.

2.3.2 Linearized single-bubble dynamics

Bubble dynamics is a robust field both in terms of theory and experiment.
Its origins can be traced to original works by Lord Rayleigh (1877). The
individual bubble is well known to be a simple harmonic oscillator for which

the time dependent radial oscillations can be described by the Keller equation

(Keller & Kolodner, 1956)

R . 3 R. 1. R Rd
_ = CU-DR=(1+=4+==)(pg — .
(1-—)RE+ (1~ )R p(1+ -+~ =)= P), (2.14)

where R(t) is the instantaneous radius of the bubble; P is the pressure at the
bubble location in its absence; and pp is the pressure at the bubble interface.
Here, the bubble response is assumed to be linear and after making suitable
approximations to Eq. (2.14) it can be shown that the radius of, and internal

pressure in, the bubble are given by
R:Ro(1+X)’ p:pe(l_q)X)’ (215)
where R, and p, are the equilibrium values (Prosperetti et al., 1988).

Pe= P+ — (2.16)
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where ¢ is the surface tension, and

o = 37 (2.17)

1= 3(y = Dax {(#/x)2 coth[(i/x)/?] - 1} '
The preceding equation arises from a solution of the thermomechanical behav-
ior of spherical gas bubbles with the additional assumption of small amplitude

oscillations (Prosperetti et al., 1988), with v denoting the ratio of specific heats

in the gas. The thermal penetration length is given by

- 2.1

X wR(z) ? ( 8)
in which D is the thermal diffusivity of the gas (Lu et al., 1990; Commander &
Prosperetti, 1989; Prosperetti, 1991). It is possible to show that the response

of the bubbles to the harmonically oscillating averaged pressure field is given

by

_(P—P,)/pR:

w2 — w? + 2ibw’ (219)

X =

where w, is the natural frequency of the bubble, and b is the effective damping

‘constant’ given by

2 _ P 20
wi = péf (3&— Rope> (2.20a)
2‘U/ De szo
b = — (P . 2.2
pR? + 2pr§\g( )+ 2c (2:200)

Here, p is the liquid viscosity, and I(®) returns the imaginary portion of &.
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Neglecting the effects of surface tension in Eq. (2.20a), the well known

Minneart (angular) resonance frequency is readily obtained for the bubble

(Minneart, 1933)

1%

1
W R% <3_"”f°°> n (2.21)
Thus the resonance frequency is proportional to the inverse of the radius and
in water at atmospheric pressure (i.e., near the surface) is well approximated
by the simple expression f, ~ 3.2/R, in Hz.

In Eq. (2.20b) the damping term, b, is a frequéncy dependent complex
quantity which accounts for viscous, thermodynamic, and acoustic losses; &

again is the frequency dependent polytropic exponent (Prosperetti, 1991),
k = R(D)/3. (2.22)

A graph of its values for a bubble of radius R, = 500 . m is shown in Figure 2.2.
It is interesting to note that the polytropic exponent approaches unity (i.e., the
isothermal limit) well below the bubble resonance frequency (f, ~ 6.4kHz),
and its adiabatic value of v = 1.4, the ratio of specific heats for a diatomic gas,
at higher frequencies. It seems that only in the extreme limits does the gas in
the bubble portray purely isothermal or adiabatic thermodynamical behavior.
Table 2.1 lists values of the physical constants and environmental parameters

used in the calculations presented in this section.
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Figure 2.2: Polytropic index versus frequency for a 500 4 m radius bubble.

2.3.3 Effective wave equation

The effective wave equation in the bubbly fluid is obtained by eliminating the

velocity field from Eq. (2.13a) and (2.13b), using Eq. (2.12) and (2.19). After

linearizing (d’Agostino & Brennen, 1983; Commander & Prosperetti, 1989),

the wave equation takes the following form:

V2P + k2P - P.) =0, (2.23)
p | 1024 kg/m3| ¢ | 1500 mys
Pe 1.2 kg/m®|c, | 330 mys
P, 10° Pa T 18 °C
0% 1.4 o| 72 N/m
4 | 0001 Pa-s

Table 2.1: Physical parameters used in this section.
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where k. = w/c, is the effective wave number in bubbly mixture, and c, is the

effective sound velocity. The dispersion relation obtained is
w 4mnRw?

k2= — : 2
c? + w? — w? + 2ibw (224)

- This wave equation (Eq. 2.23) describes the interesting phenomena alluded
to earlier. Clearly the effective wave number in the mixture is frequency de-
pendent and complex. Thus one can expect a maximum in the attenuation
at the bubble resonance frequency. For frequencies below bubble resonance,
the w, term in the denominator of Eq. (2.24) dominates yielding a wave num-
ber proportional to the driving frequency, and hence an effective sound speed
relatively independent of frequency.

The ratio of the sound speed in the liquid to the speed of sound in the
mixture is obtained by dividing Eq. (2.24) by k? = w?/c? yielding,

c 4nc*nR,

. 2.25
c? w? — w? + 2ibw (2:25)

Then for frequencies well below the bubble resonance frequency, the mixture

sound velocity can be approximated by

2~ 4mR, _ 3B
C N Tur T aR

(2.26)

neglecting the damping term. Substitution of Eq. (2.12) and (2.21) into the
preceding approximation yields ¢, = /&P, /p, which resembles our previous

approximation Eq. (2.9) to within a factor of (1—3)~%/2, reinforcing our earlier
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assumption that below the bubble resonance frequency' the mixture sound
speed in dependent only on the void fraction.

Let the ratio of liquid sound speed to effective sound speed in the mix-
ture be ¢/c, = u + iv. Then the phase velocity in the mixture is V' = c/u
rather than R(c,.), because the time and spatial dependence of the harmonic

waves in Eq. (2.23) are described by
. . v .U
exp(ik,x — iwt) = exp(—wzx) exp(zw(zm —t)). (2.27)

In the low frequency limit, the square of the phase velocity V is essentially
equivalent to the previously derived expression (Eq.2.9) and (2.26). The fact
that the effective medium expressions, k. and c., are complex indicates that
sound propagation in the mixture is exponentially attenuated. The attenu-
ation coefficient, A = 20(log;, €)(wv/c), is attributable to the Viscous, ther-

mal, and acoustic energy loss mechanisms which affect the bubble as given in

Eq. (2.20b).

2.3.4 Calculations and experimental results

To perform the calculations, codes based on the equations in (Commander &
Prosperetti, 1989) and (Lu et al., 1990) were originally written in Mathematica
and tested using the data sets from these papers and compared to the figures
in their papers. To improve the performance vastly, the codes were later
cast in the C and C++ programming languages and executed on both Sun

workstations and Apple Macintosh computers. Special attention was paid to
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any calculation involving complex arithmetic. To evaluate these expressions
(e.g., \/(z), 271, etc.), standard techniques were used (Abramowitz & Stegun,
1972).

In F‘igure 2.3, the frequency dependent phase velocity and attenuation
are plotted for a monodispersed bubble distribution of radii 500 2 m, and for
B =107°,10"%, and 10~3. The upper set of curves represent the phase speed
in the mixture. For the majority of frequencies below the bubble resonance
(i.e., the sharp dip), the sound velocity asymptotes as predicted by the Wood’s
equation (Eq.2.9) and is nearly flat. The bubble resonance frequency predicted
by the Minneart expression (Eq. 2.21) for a 500 xm bubble is approximately
6.4kHz. In Table 2.2, a comparison of the limiting forms for the sound speed
is given. This reinforces the statement made earlier that for frequencies well
below the bubble resonance the sound speed in the mixture is dependent only

on the void fraction, and not the individual bubbles per se.

Wood’s

I} Eq. Eq.(2.8) Eq. (2.26)
107° — | 1363 mys 1359 my/s
107% | 988mys | 850my/s 841 m/s
1073 313mys | 319mys 314 mys

Table 2.2: Comparison of sound speed as given by Wood’s equation (Eq.2.9),
Eq. (2.8) and the dispersive phase speed model (Eq.2.26) evaluated at 100 Hz.

The ‘supersonic’ region following the bubble resonance broadens with
increasing void fraction and is due to the bubbles pulsating out of phase with
the pressure disturbance. This causes the mixture to appear stiffer, and hence
the corresponding increase in the mixture sound velocity is observed. Well

above the bubble resonance frequency, the phase speed asymptotes to its bub-
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Figure 2.3: Phase speed (upper) and attenuation (lower) versus frequency for
B =105 1074, and 1073, and bubbles of radius R, = 500 xx m.
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ble free value of ¢ in the liquid. The attenuation is shown in the lower trio of
curves, the peak in these curves occurs at the fundamental bubble resonance
frequency. It is clear that the attenuation increases as the number density of
bubbles increases, as onelwould expect.

For a given void fraction, increasing or decreasing the bubble radius has
the affect of shifting the sharp dip at resonance in the phase speed and the
peak in the attenuation curve to the left or right, respectively, as illustrated

in Figure 2.4 for 8 = 1072 and bubble radii of 1.1 mm and 0.1 mm.
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Figure 2.4: Phase speed versus frequency for § = 1073, and bubbles of radius
R,=1.11mm and R, = 0.1 mm.

Silberman (1957) was one of the first to measure the sound speed and
attenuation in bubbly mixtures. He filled a rigid cylinder with fresh water
and created bubbles by forcing air through hypodermic needles being careful
to maintain the water height and void fraction in the tube. Assuming the

top and bottom of the tubes were pressure release, standing waves could be
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set up in the cylinder well below the tube cut-off frequency. For a given
driving frequency, the nodes (or pressure minima) were measured by lowering
a hydrophone down the axis of the tube at the following positions 0, A./2, A.,
etc., where ), is the sonic wavelength in the mixture. Using this information he
calculated the mixture sound speed in the tube by multiplying the measured
wavelength by the driving frequency. Below the bubble resonance frequency,
his measurements were found in good agreement with the models proposed by
Wood (Wood, 1941) and Spitzer (1943).

The attenuation due to the mixture was deduced by taking the ratio of
the pressure amplitude measurements made at the anti-nodes near the driving
transducer (i.e., A = logio(P1/P2)/(x2 — x1)). Silberman’s data compares fa-
vorably with Spitzef’s classic effective sound speed model outlined in Physics of
Sound in the Sea (NDRC, 1946). Spitzer’s dispersion model assumes that bub-
bles behave adiabatically, which is reasonable for the relatively large bubbles
sizes (R, > 1 mm) in Silberman’s experiment. For smaller bubbles, however,
this approach cannot be expected to be accurate, especially since the radial
pulsations are closer to isothermal at low frequencies. Also, the advantage of
the model outlined in this chapter over Spitzer’s is that both the damping
constant for the bubble and the polytropic exponent of the gas are dependent
on the bubble radius and driving frequency.

Fox et al. (1955) measured the phase velocity in a bubbly mixture by
comparing the phase of a received signal in a tank containing pure water and
finally a bubbly mixture. Thus, the attenuation measurements were easy to

obtain. The agreement with the model is only semi-quantitive due to noise
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from standing waves in the tank. This reverberation was likely driven by
bubble formation noise.

In comparison with other experimental efforts, Silberman’s measure-
ments were unsurpassed in accuracy and control. However, a recent paper by
Cheyne et al. (1995) rivals that of Silberman. They adopted the Silberman’s
standing wave in a tube approach, but developed a non-intrusive measurement
technique utilizing a form of Laser Doppler Vibrometer (LDV). Measurements
were also performed by lowering a hydrophone into the tube as indicated in
the comparison with theory in Figure 2.5. A lightweight shaker was used to
drive a piston at frequencies swept from 100 Hz to 20 kHz located at the bot-
tom of the tube. The LDV data were acquired by placing the sensor at the
vertical mid-point of the tube and the output recorded using a sweep spectrum
analyzer. This resulted in a series of peaks in the frequency spectrum which
corresponded to the tube resonances for a given water level and void fraction,
and thus the sound speed was easily obtained. Strong attenuation and the
extremely low phase speed at the bubble resonance (2.9 kHz) limited the data
to values above and below the resonance frequency of the bubbles. Due to the
extremely low sound speed at resonance, the tube would have to be less than
only a few bubble radii in diameter to satisfy the planewave cutoff criteria.
The close agreement with the theory evident in Figure 2.5 was achieved with-
out resorting to fitting parameters. Note, in particular the exceedingly high
sound speed measured in the ‘supersonic’ region around 10kHz and overall
excellent agreement with the model of Commander and Prosperetti.

In Lamarre’s (1994) recent research effort, the speed of sound and atten-
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Figure 2.5: Frequency dependent phase speed. The bubble radius was
1.11mm, and the void fraction 8 = 1072. The crosses represent the data
measured by lowering a hydrophone down the length of the standing wave
tube, and the circles using the LDV. Data courtesy of Cheyne et al. (1995)

uation were measured beneath breaking waves using a pulse propagation—delay
technique. The sound speed was estimated by dividing the propagation dis-
tance by the transit time of the pulse. The distance between the source and re- '
ceiver was 1.2 m and the measurements were performed at four depths (0.25m
vertically spaced stations just below the surface). They typically observed
decrements in the sound speed on the order of 100 m/s and a maximum devi-
ation of 800m/s, which corresponds to void fractions of approximately 0.008
and 0.017 respectively. The sound speed decrements were found to decrease
with depth in accordance with the lowered the bubble population. Although
this effort reported decrements in the sound speed in excess of 800 mys, it is
likely that a closer spacing between the source/receiver pairs would provide

a more highly localized result. That is, when the distribution of bubbles is
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not uniform across the 1.2 m separation, say a smaller densely populated re-
gion of dimension 0.25m, the measurement would likely be skewed to sound
speeds closer to the liquid and therefore would not yield and accurate result
for the minimum sound speed encountered in the bubbly region. The difficulty
in performing this type of acoustic measurement is apparent since it must be
conducted at frequencies well below the bubble resonance frequency, which
limits one to relatively large separations.

In a previous experiment, Lamarre and Mellville (1992) used a conduc-
tivity probe to measure the void fraction, rather than the sound speed, beneath
breaking waves in the ocean and the laboratory. Each sensor consisted of trio
of nichrome wire electrodes spaced 1.6 cm apart and 20 cm in length arranged
in a parallel fashion. As bubbles passed between the wires, the conductivity
changed depending on the fraction of air occupied by the bubbles. The system
was calibrated in a cylindrical tube in which the bubble size distribution, air
flow rate, and void fraction were controlled. This method provided a substan-
tially higher localization of measured void fraction, but is limited to larger void
fractions in the range 1073 to 0.3—the acoustic technique described above is
capable of measuring void fractions down to 1075, In their field experiment,
they reported instantaneous void fractions at six depths (equally spaced by
15 cm, beginning at the surface) on the order of 1072, but at times exceeding
10~1. In the laboratory, surface waves were propagated down the length of
a narrow flume and made to break above a single fixed—depth void fraction
probe. Thus as the plume beneath breaking wave travelled past the sensor

a temporal image of the localized void fraction was obtained at a particular
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depth. The probe depth was varied and the measurement repeated for several
more breaking events which allowed them to construct a spatial and temporal
image of the void fraction beneath a wave. These images suggested that the
laboratory plumes were nominally hemi-cylindrically shaped. When the sen-
sors were deployed on a buoy in the ocean, void fractions in the range 1072 to
10~! were typically observed directly beneath an actively breaking wave—in

good agreement with the sound speed decrements they later measured using

acoustic techniques.

2.3.5 Bubble size distributions

In order to simplify the analysis, the model presented prior to this point is valid
only for a monodispersed bubble radius distribution. However, in the sea, or
even in well controlled laboratory experiments, this assumption is likely to
break down. The definition of the void fraction (Eq. 2.11) provides a mecha-
nism to include a wide range of bubble radius distributions through the dis-
tribution function f(a). The limiting case of a monodispersed distribution is
obtained by setting f(a) = nd(a— R,). A more realistic population would con-
sist of range of radii, not a single radius. Examples might include a discrete

bubble radius population for which
M
fla)= mmé(a—Rom), m=1,2,...,M, (2.28)
m=1

where 7, is the ‘partial’ number of bubbles per unit volume having radius Ry m.

Alternatively, a continuous radius distribution corresponding to the measured
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populations at sea is given by

Mo @ ;a1 <a<ag,
fla) = (2.29)

0; otherwise,

where the coefficient H ranges from 3.5 to 5 as indicated in (Lamarre, 1993).
Another common continuous distribution is the truncated Gaussian distribu-

tion

~(legfe)”

Ne \ 20/ a;<a<ag,

fla) = (2:30)
0; otherwise,

Here, R, is the mean radius; o2 is the mean square variance about the mean;
7, is the amplitude of the distribution; and the values a; and a, are the limits
of the minimum and maximum bubble radii in the continuous distribution.
For any of the above considerations, the integral relation (47/3) [° f(a)a®da
must yield the void fraction (Eq.2.11).

An extension of the collective oscillations model to the more complex
bubble distributions is outlined in (Commander & Prosperetti, 1989) and will
not be presented in detail here. Instead, the results are given for the effective

wave number in the mixture (Eq.2.24),

2 o) 2
=% 14 fe)ow” 2.31
Tt 7r/0 w2 — w? + 2ibw . (231)

and thus the sound speed ratio squared for a multi-dispersed radial distribu-
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tion of bubbles is

2 00
c f(a)a
— ] =1+4nc . :
(ce) e /0 w2 — w? + 2ibw da (2:32)

Generally, the distribution functions are truncated over some range of bubble

radii as indicated in Eq. (2.29) and (2.30). Thus, it is trivial to demonstrate
that for driving frequencies well below the lowest resonance frequency (i.e.,
maximum radius bubble), that Eq. (2.32) approaches the Wood’s expression
and is therefore dependent only on S—the effect of the bubble distribution is
small for frequenéies below bubble resonance. However, in the frequency range
near the bubble resonance, the multi-radial distributions tend to spread the
resonance minimum and the broad peak of the phase speed curve over a wider
range of frequencies. This is clearly illustrated in Figures 2.6, 2.7, and 2.8 for

which the phase speed for the bubble radius distributions above are depicted.

M (%) | Rom(pm)
10 100
20 200
30 300
25 400
15 500
) 600
2 700
1 800

Table 2.3: Discrete bubble size distribution used in Figure 2.6. The total
volume fraction is 8 = 1073. The percentage of bubbles (by count) at each
radius are listed in columns 7, and R, n,, respectively.
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Figure 2.6: Phase speed as a function of frequency for a discrete bubble
radius distribution. The average void fraction is 8 = 1073, and the bubble
distribution is listed in Table 2.3.
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Figure 2.7: Phase speed as a function of frequency for a bubble radius dis-
tribution having f(a) = n,0a~*®. The void fraction is # = 10™*; and the limits

of the distribution is 30 pm < a < 240 pm.
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Figure 2.8: Attenuation and phase speed as a function of frequency for a
truncated Gaussian bubble radius distribution. The void fraction is 8 = 1074,
the mean bubble size is R, = 60 pm; the standard deviation is op, = 60 2 m;
and the range of the distribution are 30 pm < a < 240 pm.

64



2.4 Discussion and Summary

In this chapter the collective oscillations model for sound propagation in bub-
bly mixture was discussed. Three approaches were presented (the first in the
introduction) which led to a good approximation for the speed of sound in the
two—phase mixture at frequencies below the bubble resonance frequency. For
this limiting case, the speed of sound in the mixture is primarily governed by
the void fraction 8. In the first two models, the sound speed in the quasi-static
limit for collective bubble oscillations was derived—recall Eq. (2.8). It is clear
then, that for the extremes of the void fraction (f — 1 or 8 — 0) that the
speed of sound in the mixture approaches the values of the sound speed in the
. gas ¢, or the speed of sound in the liquid c, respectively. However, for 3 in
between these limits, the mixture sound speed can be lowered to values that
fall well below the sound speed in the liquid, and even to values below the
speed of sound in the gas. This indeed is remarkable! Since the wavelength of
the sound at these frequencies is much greater than the bubble radii and their -
respective spacing, the mixture can be treated as an effective fluid having a
density near that of water and a sound speed that is dependént only on the
void fraction and not on the details of the bubble population statistics.

In the first two models, the dispersive effects of the bubbles in the mix-
ture was not considered. However, it is well known that bubbles are simple
harmonic oscillators which resonate at a frequency given by the Minneart ex-
pression (Eq.2.21). In addition to resonance phenomena, the bubbles also
attenuate sound significantly. The original model for a dispersive mixture

sound speed was presented by Spitzer in Physics of Sound in the Sea (NDRC,
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1946). A more mathematical approach was taken by Commander and Pros-
peretti (1989), in which they derived the frequency dependence of the sound
speed in the mixture which includes attenuation due to acoustic, thermal, and
viscous damping. Their model builds on previous work by. considering the
thermomechanical properties of bubbiy fluids more rigorously than before.
There are three primary frequency regimes of interest in the collective
oscillations theory: below resonance, near resonance, and above resonance.
Below the fundamental resonance frequency of the bubbles the mixture sound
speed asymptotes to the Wood’s expression (Eq.2.9), which is dependent only
on the void fraction. In this limit the mixture can be considered an effective
medium with density p. and sound speed ¢, given by the Wood’s expression
(Eq.2.9). The imaginary part (attenuation) is small in this region and is
generally neglected in most studies. As the driving frequency approaches the
fundamental resonance frequency of the constituent bubbles, the sound veloc-
ity in the mixture drops sharply and then rebounds to values well above the
speed of sound in the host fluid. A corresponding increase in attenuation is
also observed. Following the bubble resonance, the sound speed approaches its
bubble free value in the liquid. The roll-off into this regime displays a marked
dependence on the void fraction (i.e., for larger 3 the peak in the phase speed
curve broadens). Phenomenologically, the collective oscillations model can be
explained by considering the bubble as a simple resonance oscillator. The
bubble oscillates in phase with the driving force below resonance, and out of
phase with the driving force above resonance. In the higher frequency regime,

the driving force ‘sees’ a much stiffer fluid medium, and hence a higher sound

66



speed.

In the effort described in this dissertétion, the ultimate goal is to con-
sider the scatter from spherical clouds of bubbles, primarily at frequencies be-
low the bubble resonance. Hence, the asymptotic speed of sound given by the
Wood’s expression is of particular importance. This corresponds to the ‘flat’
region below the resonance frequencies of the largest bubbles. In this limit,
the bubbly mixture can be modeled as a homogeneous fluid (Eq.2.23) in which
the effective sound speed is governed by (3 alone (Eq. 2.9) and not the indi-
vidual bubbles. It is clear that this is not exactly true if one were to consider
attenuation and the slight dispersive effects below bubble resonance—recall
Figures 2.3, 2.4. However, the Wood’s expression (Eq.2.9) is often used since
the difference in sound velocity between this approximation and that given
by Eq. (2.23) is generally only a few meters per second and the attenuation is
generally of negligible concern below the bubble resonance.

Several experimental efforts aimed at measuring the phase speed of
sound and attenuation in a bubbly mixture have been conducted over the past
fifty years. Most notable are those by Silberman (1957), and more recently by
Cheyne et al. (1995). The excellent agreement with the model suggests that
the bubbly bubbly fluid behaves as a homogeneous medium, especially well
below the Tesonance frequencies of the individual bubbles. In the past decade,
these ideas were independently (and vigorously) promoted by Carey (1985)
and Prosperetti (1985) as a possible mechanism to explain low-frequency am-
bient noise emissions during wave breaking at sea. When a bubble cloud is

created by a breaking wave or in a laboratory by a bubble plume generator, a
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‘self-induced’ damped resonant oscillation results in which the eigenfrequency
is determined by the phase speed within the effective medium and the char-
acteristic length scale of the cloudv (Oguz, 1994; Yoon et al., 1991; Nicholas
et al., 1994; Roy et al., 1991; Carey et al., 1993; Kolaini et al., 1994). The
low—frequency noise associated with bubble cloud formation is driven in part
by the broad-band ‘pinch—off’ noise generated by a newly formed bubbles as
they attempt to reacﬁ equilibrium shape and size, and in part by hydrody-
namic flow associated with the air entrainment and clbud formation process

(Oguz et al., 1995).

68




Chapter 3

Acoustic scattering from a
spherical bubble cloud:

Theoretical model

3.1 Introduction

Scattering can be regarded as radiation from a ‘source’ which is driven by
an incident wave rather than by a local external generator. As an example,
consider a plane wave traveling in the z—direction through a uniform fluid. A
volume element of the fluid will be set into oscillatory motion in the direction
of wave propagation, and it will be subject to periodic compression and rar-
efaction. The response of the fluid to the incident wave will involve both the
inertial mass and the compressibility of the fluid. The volume element in the

fluid responds by pulsating and oscillating, giving rise to both monopole and
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dipole radiation.

For a uniform fluid, all volume elements represent sources of equal
strength but different phases, where the phase is determined by the position
of the element along the propagation path. A wave frqnt is defined by all
volume elements oscillating in equal phase. Ahead of the wave front sound
is propagated by each volume element which radiates sound in phase (the so
called Huygens’ ‘wavelets’), and behind it the radiation is 180° out of phase
resulting in zero backwards propagation.

Now consider an inhomogeneous volume embedded within the previ-
ously uniform fluid. The foreign body possesses a different inertial mass and /or
compressibility than that of the host fluid. The plane wave, as before, travels
in the z—direction giving rise to Huygens’ wavelets, but when the wavefront
reaches the boundary of the inhomogeneous region the differing material prop-
erties create virtual sources having different strength and phase compared to
their neighbors in the wavefront. This results in an excess or scattered wave
contribution radiating from the foreign body. For non-uniformities within
the wave front that are small in comparison to the wavelength (ka < 1), the
monopole field will be proportional to the difference in compressibility and the
dipole field proportional to the density contrast.

In this section a theoretical model for acoustical scattering from a pen-
etrable sphere (target) in the freefield will be considered. Free-field implies
that the host fluid is free of inhomogeneities or reflecting surfaces, with the
exception of a single embedded target. Although the amplitude, periodic-

ity, and phase of the incident plane waves are known, the exact driving force
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causing the sphere to radiate sound is not, and therefore must be calculated
exactly. For wavelengths much larger than the target radius (A > 2ma), the
scatterer ié considered ‘compact’ and the driving pressure on the boundary is
often assumed to be the incident field (i.e., the Born approximation). This
results primarily in monopole and dipole scattered contributions. However, for
shorter wavelengths, the driving pressure on the surface of the sphere will not
be uniform and the boundary value problem must be solved directly. In spe-
cial cases, the sound waves penetrating the scatterer or traversing ité boundary
coincide with the eigenvibrations of the sphere and interfere constructively by
setting up self-sustaining standing waves in the object or on its surface. It is
intuitively clear that when the incident wave oscillates at one of the target’s
eigenfrequencies that the corresponding eigenvibration in the sphere will be
excited and strongly affect the scattered wave.

Our interest is in scattering from bubble clouds in the ocean. Although
it has long been known that a two—phase mixture of air bubbles in water
pulsates in a collective fashion and that the sound speed in the mixture below
the bubble resonance frequency is determined by the void fraction alone and
therefore the region containing the mixture can be treated as an effective
medium, it was not proposed until 1985 that such a mixture could serve as
a simple radiation source and a scatterer of sound. When a bubble cloud is
created by a breaking wave, a damped resonant oscillation results in which the
eigenfrequency is determined by the phase speed within the effective medium
and the characteristic length scale of the cloud (Carey & Browning, 1988;

Oguz, 1994). Several examples of ‘self-induced’ sub-kilohertz radiation from
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bubbly mixtures were given in Chapter 1 and Chapter 2 (Yoon et al., 1991,
Carey et al., 1993; Nicholas et al., 1994; Roy et al., 1991; Nicholas et al., to
be submitted). It seems plausible then that if a bubbly mixture is an efficient
radiator of sub—kilohertz sound, that it might also serve as effective scattering
target. This idea was explored in a recent experiment performed in a fresh
water at Lake Seneca in New York state (Roy et al., 1992) and is the impetus

for the scattering model presented in this chapter.

3.2 Formalism

In this model, a continuous stream of monochromatic plane waves incident on
a compressible sphere of radius a surrounded by an infinite fluid as indicated
in Figure 3.1 is assumed. The density and sound speed within the sphere are
denoted by p. and c,, respectively. In the surrounding fluid, these quantities
are given by p and c. This solution is not limited to bubble clouds, but for the
purposes of this work the effective medium approximations derived in Section 2
will ultimately be applied.

The solution for scattering from a sphere is straightforward. Anderson
(1950) and Rshevkin (1963) treat the case for scattering from a fluid sphere.
Morse and Ingard (1968) arrive at the solution after an extremely mathemati-
cal analysis using an integral Green’s function technique. Morse and Feschbach
(1953) used an elegant phase shift analysis which is better suited to spheres
having an acoustic coating of known impedance or more complex geometries.

A comprehensive survey of acoustic and electromagnetic scattering from sim-
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ple shapes (i.e., separable geometries) such as spheres, cylinders, spheroids,

cones, plates, etc., can be found in (Bowman et al., 1987)—much of this work
is based on the previous solutions by (Morse & Feshbach, 1953). Flax et al.
(1981) discuss resonance scattering theory and its application to solid spherical
inclusions, air bubbles, and various fluid loaded shells. Their work departs from
the previous in that they apply broad band (short pulse lengths) techniques,
rather than the usual monochromatic (steady state or CW) assumptions, us-
ing Fourier analysis. All the works cited above, however, arrive at identical
scattering solutions for the fluid sphere case'. However, Anderson’s approach
is preferred due to its inherent simplicity (one should note that his scattering
angle is shifted 180° from the presently accepted notation).

An alternative approach taken by Gragg and Wurmser (1993) was to
numerically solve for the backscattered wave from a bubble filled sphere or
other shape. They implemented a Boundary Value Integral (BVI) technique
to computationally solve for the scattered wave contribution from a bubble
cloud (both spherical and spheroidal) by applying the appropriate boundary
conditions on a boundary ‘mesh’ enclosing an arbitrarily shaped scatterer.
This technique is shown to result in the exact scattering solution for the sphere
and spheroid given an appropriate tiling, but is better suited to scattering
from more complex geometries since the numerical method is computationally
expensive. The advantage to the method presented in this chapter, on the
other hand, is that it is simple and straightforward, and therefore can be used

to efficiently predict the scattering spectrum from a spherical bubble cloud.

1This can be shown in particular for the solutions by Anderson, Rschevkin, and Morse
and Ingard after much algebraic work.
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It will be shown that the solution for acoustic scattering from a fluid
sphere has a marked dependence on the internal sound speed and density.
Thus, in order to consider the case of scattering from bubble clouds the collec-
tive oscillations model will be applied as presented in Chapter 2. Scattering
from a spherical bubble cloud will be considered explicitly following a review of
sound scattering from a ‘hard’ impenetrable sphere and an idealized (lossless)
bubble. These cases are well known and they are discussed only for comparison
and completeness. Furthermore, a simple analytic expression for the scattering
response in the low frequency limit (i.e., small ka) will be derived as it proves
to be a fundamentally useful tool and yields considerable physical insight. In
addition, this expression provides a good approximation for the monopole, or
‘breathing mode,” resonance frequency of the sphere.

In this modeling effort, the sphere is chosen as the scattering target not
because spherical bubble clouds are created beneath the ocean surface, but
rather because the length scales of the clouds created are small in comparison
to the wavelength of sound over the frequency range of interest (i.e., the sub-
kilohertz frequencies where long range sonar systems operate). The natural
creation of bubble clouds results in a densely populated region of bubbly fluid
having a characteristic size of 0.5m or less in length scale. For low acous-
tic frequencies, such a target is termed acoustically compact, that is ka < 1.
For most acoustic wavelengths encountered in this study, the cloud can be
considered ‘compact’ since A > 2ma, and the response of the cloud will be
dictated by the monopole mode which is primarily dependent on the volume

and compressibility of the target, and more or less independent of shape pro-
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vided that the aspect ratio is close to unity. For example, consider an acoustic
frequency of 300 Hz. The sonic wavelength in seawater is A ~ 5m, greater
than the characteristic dimensions of the target (¢ = 0.5m). The scatterer is
well characterized by a sphere and the solution is cast in a multipole expansion
(Lighthill, 1975). The most important term in describing the low—frequency
behavior of the system is the monopole term.

The coordinate system for the sphere is shown in Figure 3.1, where the
relationship between the Cartesian and spherical polar coordinate systems is

given by the usual transformations
z=rsinfcosp, y=rsinfsing, z=rcosb, (3.1)

and the coordinate origin is located at the center of the sphere.

A
i y-axis

e

Incident ¢|ane wave

>

—

Figure 3.1: Scattering geometry. The z-axis is aligned with the direction of
plane wave propagation. The coordinate system origin is located at the center
of the sphere.

The sphere is assumed to consist of an isotropic fluid material of density

p. and sound speed c,. Outside the sphere, an infinite fluid of density p and
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sound speed c exists. A continuous plane wave of angular frequency w insonifies
the sphere from the z—direction. The time and spatial dependence of the
incident sound is exp[i(k - r — wt)], where the magnitude of the wave number
is k = w/c=2m/), and A is the wavelength of the incident sound in the host
fluid. Inside the sphere, the wave number is simply k. = w/c. = 27/),, and
), is the effective wavelength of sound inside the sphere.

The general solution for the pressure everywhere is

2 +ps T Z a,
p= (3.2)

Dint r<a,

where the subscripts ¢, s, and int, refer to the respective incident, scattered,
and internal fields. A monochromatic incident plane wave of amplitude p,

impinging on the sphere has the form

pi = poeT (3.3)

— poei(kr cos §—wt) ) (34)

This disturbance gives rise to both internal and external waves, piy: and ps,

respectively.
Exploiting the symmetry of the problem, the incident field can be ex-

pressed as a series expansion in spherical harmonics dependent on 7 and @,
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angular frequency w, wave number k, and time {.

o

pi(r,t) = po ¥ _(2m + 1)i™ Pr(cos 0) jim (kr)e™™, (3.5)

m=0

where the j,,(kr) is the spherical Bessel function of the first kind of order
m; and Pp,(cosf) is the Legendre polynomial of order m. The solution is
independent of the angular direction ¢ due to azimuthal symmetry.

At the boundary of the sphere (r = a), both the pressure and nor-.
mal component of the particle velocity must be continuous. For the acoustic

pressure, the boundary condition is

pi(a) + ps(a) = pin(a). (3.6)

The continuity of radial component of the particle velocity on the spherical

boundary is
ui,r(a) + us,r(a) = uint,r(a)- (37)

The relationship between the pressure and the normal velocity is

=i [ Ops
u*,’l‘ - p*C* I:a(k’r)] ) (38)

where the subscript x denotes the incident, internal, or scattered solutions. In
addition, the pressure inside the sphere must be finite everywhere, and outside

the sphere the amplitude of the scattered pressure disturbance must go to zero
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as r approaches infinity.

The acoustic pressure must satisfy the three-dimensional wave equa-

tion:
Vip— 2P = 0, (3.9)

which simplifies to, V?p + k?p = 0, after evaluating the time derivative.
The solution for the internal and scattered pressure are given by the

partial wave expansion in spherical harmonics as follows:

p(r<at) = Z A Pr(cos ) jm (kr)e ™. (3.10)
m=0
ad im (KT :

ps(r > a,t) = Z By Py (cos 6) Im(kT) e ™t (3.11)
m=0 N (kT)

Here, the j,(z) and n,(z) represent the spherical Bessel functions of the first
and second kind of order m and argument x (usually called the spherical Bessel
and spherical Neumann functions, respectively). The coefficients A, and B,
are obtained by applying the boundary conditions Eq. (3.6) and (3.7). Our

interest is in the scattered field, not the internal pressure field, thus
ps(r) = —:—2—0 Z i™(2m 4+ 1)R,, P, (cos 8) Ay (kr)e ™", (3.12)
m=0

where hp(z) = jm(z) + inm(z) is the spherical Hankel function, and R,
satisfies the boundary conditions. Individual terms in the expansion Eq. (3.12)

yield the monopole, dipole, quadrupole, etc., amplitudes (i.e., m =0,1,2,...,
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respectively). The monopole term radiates sound uniformly in all directioﬁs
since Py(cosf) = 1, identically. Furthermore, the m = 0 term represents the
volume or breathing mode of the sphere. Unless otherwise specified, the time
dependence of the solution exp(—iwt) will be discarded.

The coefficient R, in Eq. (3.12) is determined from the boundary con-

ditions where,

_ pCuim(kea)in(ka) = pejp (k.a)im(ka) (3.13)

7
R = e i) (Ra) = pejty (ko) hm(Fa)”

and j/ (z) and h/,(z) are the derivatives of the spherical Bessel and Hankel
functions.

In the far field (kr > 1), the scattered pressure in Eq.(3.12) asymptotes

to
Do eikr o
pe(r) — i mZ;)(2m+1)72,,L1Pm (cosb), (3.14)
— po%f(ka,g), (315)

where F(ka, ) is the so called dimensionless scattering form function.

The preceding equation (3.14) deserves special attention. The ampli-
tude of the solution falls of inversely with distance as expected from a spherical
radiating source. Also, each term in the series has a strong dependence on the
internal and external densities and sound speeds, as well as the driving fre-
quency (this is because k = 27 f/c and k, = kc/c.). In addition, the angular

dependence of the scattered radiation is given by the Legendre polynomials
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which result in preferential radiation in some directions since the boundary of
the target is not driven uniformly. While it can be shown that the direction-
ality is only of moderate importance for small ka and can be quite significant
for larger ka, our interest is in the backscattered contribution. Accordingly,
a further simplification by setting § = 180° will be applied and the Legendre
polynomials simplify to the well known relation Pp,(~1) = (~1)™.

The coefficient R,, contains the fundamental dependence of the scat-
tering on frequency and material properties of the target and its host. It is
a complex quantity, and thus the magnitude and phase are important. For a
given density and sound speed of the host and target, resonances or peaks in
the scattering spectrum will occur for singularities of the coefficient R., (i.e.,
when the denominator of Eq. (3.13) approaches zero). This will be discussed

further in Section 3.4

3.3 Backscattering form function

Although the incident and scattered pressures (Eq.(3.4) and (3.14)) are exper-
imentally measurable quantities, it is sometimes impractical and often unnec-
essary to report absolute levels when discussing the efficiency of the scattering
by a target. Rather, coefficients of the relative scattering strength, such as the
scattering form function, scattering cross section, ratio of pressure amplitudes,
and target strength are generally reported.

The total scattering cross section (o) is defined by the ratio of the total

power scattered divided by the incident intensity. Expressed as an integral over
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all angles, the total scattering cross section is

HT / / 99 40 (3.16)

where the quantity II, is the total power scattered over all angles; df is the

increment of solid angle; and % is the differential scattering cross section.
When ¢ is evaluated, it determines the power scattered per unit solid angle
and per unit incident intensity. The differential scattering cross section has

the dimensions of area is defined as

j= %
q
»

0"\1
3
¥}

(3.17)

where I, is the scattered intensity, I; is the incident intensity, and r is the
distance from the point of interest (the receiver) to the target (Clay & Medwin,
1977). For an isotropic scatterer, do,/dS) is independent of direction and equal
to ops/4m, Where oy is the backscattering cross section (i.e., o5 evaluated at
6 = 180°).

Closely related to the backscattering cross section is a quantity called

the relative target strength level (TS) defined by (Urick, 1967)

i/ r=1lm

where the incident and scattered intensities are evaluated at a 1m distance.
In the sonar community, the TS is the standard quantity used to indicate

the scattering strength of an object. If you consider incident plane waves and
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isotropic scattering, then Eq. (3.17) and (3.18) combine to yield

TS = 10log (4(::2) - (3.19)
T=Liref

Further discussion of the TS and its application to scattering measurements
is outlined in Appendix A.

Since acoustic intensity is proportional to the square of the pressure am-
plitude for both planar and spherical waves, the scattering cross section and
the target strength are closely related to the pressure amplitudes in Eq. (3.14).
Thus, the relationship between the backscattering cross section and the scat-

tered and incident pressure amplitudes is given by

12

Obs __ |ps

2
pr. T (3.20)

P
and the magnitude of the dimensionless scattering form function is

2r |ps|
Fl=—+—, 3.21
[ I a fpi' ( )

and is dependent explicitly on ka, g, and h. The form function is a dimen- -

sionless quantity which describes the strength of a scatterer as a function of

ka. Now,

r=1m

|p|

r=1m

in contrast to Eq. (3.21), is not explicitly dependent on ka. The radius (a) and
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the frequency must be known prior to computaﬁion of the TS.

To simplify the analysis, let us define the relative quantities g = p./p,
and h = c./c, and rewrite the scattered pressure series solution (Eq. 3.14)
in terms of these quantities. Then the magnitude of the backscattering form

function is
|Fl ==Y (-1)"@m+ )R, (3.23)

and

(3.24)

It is important to stress that so long as the material properties of the
scatterer and host are not dispersive, then the form function is strictly pa-
rameterized by the Helmholtz number, ka, and the material quantities g and
h. This scaling between size and frequency is common to many problems in
acoustics, and means that neither the scatterer size nor the frequency need to
be known independently in order to solve the problem.

From this point forward, all references to the scattering strength will be
made either through the target strength or scattering form function. Gener-
ally, the form function will be reserved for use when comparing the theoretical
backscatter from targets having a non—dispersive interior (and exterior) sound
speed. For such cases, calculation of the backscattering form function as a
function of ka alone both generalizes and simplifies the analysis and calcula-

tions considerably.
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On the other hand, for a bubbly mixture the velocity of sound is de- |
pendent of the acoustic frequency as shown in Chapter 2. Furthermore, the
dispersion relation for the mixture sound speed is in no way dependent on
the cloud dimensions, much less ka. Therefore, a plot of the backscatter form
function versus ka has little meaning for a dispersive medium unless either the
cloud radius or frequencies are specified. Of course, this is not the case for
non-dispersive media, where for a given sound speed and density ratio, h and
g, respectively, a single calculation of the form function yields valid results for
any range of frequencies or sphere radii (i.e., ka) considered.

To calculate the TS, the cloud radius and frequency range must be
specified a priori. The TS will be used to compare calculated predictions with
experimental measurements. In an experiment the characteristic dimensions
and acoustic parameterizations (g and h) of the target are not needed to
measure the TS.

Initially, the calculations were performed using Mathematica. Once it
was determined that the calculations were accurate (by comparison with the
plots in Anderson’s (1950) paper), the codes were rewritten in the C/C++ pro-
gramming languages and integrated with the collective oscillations code. The
calculations of the special functions (spherical Bessel, spherical Neumann, and
Legendre polynomials) were performed using the standard recursion relations
(simple transcend_ental equations involving sin and cos). Since the interest in
this research is confined to the lower order scattering modes (i.e., small ka),
no special attention was paid to the accuracy of the calculation of thesé special

functions.
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3.3.1 Case Studies

The dependence of the backscatter form function of a sphere in water as a
function of ka is now explored for three cases of different material parameters.
Consider first the case of the idealized hard impenetrable sphere. In this case,
the internal acoustic impedance is given by Z, = p.c, — co. Thus in Eq.(3.24)
the quantity gh — oo and Eq. (3.23) reduces to

A= | S ren+ 1)2:((:‘;)) . (3.25)

m=0

The form function versus ka for the hard sphere is shown in Figure 3.2,
where the resonances or peaks of the system are governed by the minima
of h! (ka). The peaks are due to interference between waves propagating
along the fluid boundary layer on the circumference of. the sphere (a phe-
nomenon known as creeping waves) and the specular reflection. For increasing
ka, the amplitude of the oscillations in the form functions diminish result-
ing in perfect specular reflection. And as such, the magnitude of the form
function approaches unity. For specular reflection from a hard sphere the
TS in the high frequency (short wavelength) limit basymptotically approaches
TS = 20log;y(a/2), and thus a 2m radius sphere will possess a TS=0dB.
Consequently, hard metallic spheres are often used as calibrated targets.

For the case of an idealized bubble submerged in water, that is an air
filled sphere without damping, the acoustic parameterizations are g = 0.001
and h = 0.22. In Figure 3.3, the backscattering form function as a function of

ka for a bubble is illustrated. Here, there is an obvious very sharp resonant
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Figure 3.2: Backscattering form function versus ka for an impenetrable
sphere.

peak in the spectrum at ka = .0134, followed by a rather smooth response
and then several ‘spiky’ resonances at higher ka. The fundamental resonance
corresponds to f, = 0.0134¢/2ma =~ 3.2/a in Hz, where the radius a is given in
meters. Remarkably, this peak corresponds exactly to the well know Minneart
frequency given in Eq. (2.21).

The third case is that of a frequency independent low—sound velocity
bubble cloud as shown in Figure 3.4. In this case the void fraction within
the cloud is B8 = 1072 and the Wood approximations yields ¢, ~ 313 mys.
Accordingly, g = 0.999 and h = 0.208. Again, a peak is observed in the
spectrum for ka < 1. Although the sound velocity ratio in this case and the
previous case for the bubble are nearly identical, the resonance response is
quite different. This suggests that the density ratio plays an important role in
both the frequency and width of the resonance peak. We would like to have

the ability to predict the resonance frequency for all target spheres. As a first
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Figure 3.3: Backscattering form function versus ka for a bubble.

‘guess’, we begin with the Minneart relation, f, = (1/27a)/3vP./p for the

natural resonance of a bubble, and recall that the velocity of sound in the gas
is approximately ¢, = 1/7P./p,. Substitution of the gas sound speed into the

former equation results in

fo= (ce/2ﬂ'a) \% 3pe/ ) (3'26)

where the subscripts for the gas are replaced by the subscript denoting the

generalize sphere. From Eq. (3.26), we have

ka = 2maf,/c (3.27)
= (c./0)V3p./p (3.28)
= h+/3g (3.29)

at resonance. For the case of the bubble cloud considered above, this suggests
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that ka = 0.36. This appears to be a good approximation since the peak

actually occurs at ka = 0.355.
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Figure 3.4: Backscattering form function versus ka for a bubble cloud having
B = 1073, thus ¢, ~ 313 mys (i.e., g = 0.999 and h = 0.208).

- The fundamental observation is that for a compressible fluid sphere, the
monopole resonance is clearly indicated by the first peak in each of the curves.
For ka < 1, all the cases examined exhibit a similar asymptotically increasing
slope—classically termed Rayleigh scattering. Beyond the monopole resonance
(ka > 1), in the regime known as geometrical scattering, the complex series
of higher order peaks are due to internal resonances and can be explained by
resonance scattering theory. These resonances (eigenmodes) are governed by
minimizing the denominator of R,,.

In the preceding development, the internal sound velocity of the sphere
was not dispersive and thus scattering form function is dependent on ka rather
thaﬁ frequency explicitly. In order to consider the dispersive effects of a true

bubbly fluid (using the collective oscillations model), a particular sphere radius

88



must be chosen to consider the frequency dependence. Recall, from Chapter 2
the discussion of the mixture sound speed in a bubble cloud having void frac-
tion # = 1072 with a mean bubble size of 500  m. From Figure 2.3, it is clear
that the mixture sound velocity asymptotes to the Wood approximation is
valid for all frequencies below 2 kHz and departs from this limiting value when
evaluated at higher frequencies. The attenuation over this frequency range is
not negligible. In the region surrounding the bubble resonance, the attenua-
tion in the bubbly mixture is great and thus the sphere cannot be expected to
scatter sound in the same manner as it would at the lower frequencies.

In Figure 3.5, the TS as a function of frequency, is plotted for a bubble
cloud having radius @ = 0.25m, void fraction 8 = 1073, and a uniform bub-
ble distribution of radii R, = 500 pm. Also plotted is the TS of an individual
500 u m-radius bubble. The similar pair of curves represents the effect of using
the Wood equation (lighter curve) as compared to the dispersive sound speed
formalism (darker curve) obtained using the collective oscillations theory in
Eq.(2.25). It is clear that introducing attenuation has reduced the overall scat-

“tering level at the lowest frequencies, as well as shifted the higher order peaks
to lower frequencies. The solid curve with a single peak near 5.5 kHz repre-
sents the backscatter form function of a bubble having radius R, = 500 pm.
Just above the monopole resonance of the constituent bubbles, the TS of the
dispersive bubble cloud approaches that of the perfectly reflecting impene-
trable sphere since the interior sound speed is increased dramatically (recall

Figures 2.3 and 3.2).
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Figure 3.5: TS versus frequency. The upper two curves are for a cloud radius
of a = 0.25m and 8 = 10~3. In the darkest solid curve, the dispersive internal
sound velocity was used, and in the dashed curve the internal sound speed was
calculated using the Wood expression (recall Figure 3.4). The thin solid line
corresponds to the TS of single 500 u m radius bubble. Recall from Eq. (3.22)
that a perfectly reflecting sphere (|| = 1) having radius a = 2m possesses
TS = 0dB. :

3.4 The low—frequency limit

From Figures 3.3 and 3.4, it is clear that the first or ‘breathing-mode’ reso-
nance occurs in all cases for ka < 1. It would be useful to explore the behavior
of the form function as a function of ka for a few of the lower order modes.
In Figure 3.6, the m = 0, 1,2 order terms of the backscattering form function
(Eq. 3.23) are plotted along with the full solution. It is clear that the m-th
order peak in the partial-wave solution arise as a direct consequence of m~-th
order term in the expansion of Eq. (3.23). |

Also, we should remark that the lowest order peak is dependent solely on

the m = 0, monopole term, of the series expansion. For the lowest order peak,
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Figure 3.6: Modes of sphere with g = 0.999 and h = 0.208 plotted against
ka.

an approximation to the form function is obtained by expanding the m = 0
term of the series (Eq. 3.24) to lowest surviving order in ka. Small argument
approximations to the spherical Bessel and Neumann functions (since b, () =

Jm(Z) + iny,(x)) are given by the following expansions :

R U L ¢
Jo(z) = {1— 3 +2!(3(5)—...},
1

no(z) =

Upon making these substitutions and retaining only the lowest order surviving

terms of ka, we find that the form function is approximated by

(ka)? 1— gh?

e (gh"’—ﬁéﬁ)—i@i'

(3.30)
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Thus, for ka < 1, the magnitude of the slope of the form function is
(ka)?, exhibiting what is known as Rayleigh scattering behavior®>. The peak
in this limiting form is clearly dependent on the density and sound-speed
squared ratios and the monopole resonance frequency is well approximated by
equating the real portion of the denominator (Eq. 3.30) to zero. Employing

this approximation, it is found that

0 = (ghz——(—k%(ﬂi) (3.31a)

3p.c?
k2 —_— ce .
PR (3.31b)

c. [3p.
QO = 2—’”& P . (331C)

In Eq. (3.31), k, = 27, /c is the resonance wave number, {2, is the monopole

resonance frequency (in Hz) for a spherical scatterer of radius a. For a bubble,
weset ¢, = ¢, = v/KPw/Ps P = pg, and a = R, so that Eq.(3.31c)
simplifies to the Minneart expression. The monopole resonance frequency
(Eq. 3.31c), incidentally, agrees with our previous ‘guess’ in Eq. (3.26).

For a bubble cloud, the sound speed is approximated by the Wood
expression (Eq. 2.9) for small ka, and we find that the monopole resonance

frequency is governéd by a modified Minneart expression, namely

1 3kP,
2ma\l B(1—B)p

Q, = (3.32)

In this case, the additional approximation that p, ~ p was also applied.

2The Rayleigh regime is actually noted for a (ka)? slope dependence, which is indeed the
case when one expands the scattering cross section and not the form function.
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At the monopole resonance, the ratio of scattered to incident pressure

amplitudes (the argument of the TS in Eq. (3.22)) is:

lps| _ a

1
|Pz'| 2T! locﬂ_o;

2
%;e- - 1’ . (3.33)

As illustrated in Figure 3.7, the low frequency approximation of the form
function predicts, qualitatively and semi—quantitafively, both the amplitude
and resonance frequency of the scatterer. Higher order modes of the system
can be solved in a similar manner (Flax et al., 1981). However, it is doubtful
that equations with more physical insight than Eq. (3.32) and (3.33) will be

obtained.
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Figure 3.7: A comparison of the asymptotic form function with the exact
calculation

The simple analytic expressions Eq. (3.30) and (3.31c) along with the
Wood equation lead to the following conclusions for scattering at resonance:

(1) For a given cloud radius, increasing the void fraction results in decreased
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sound speed and a decrease in the monopole resonance frequency (Figure 3.8(a)).
A corresponding increase in the monopole scattering amplitude is also observed
(Figure 3.8(b)). (2) For a fixed volume fraction (i.e., fixed sound speed), the
resonance frequency decreases with increasing cloud radius (Figure 3.9(a)) and
the scattering amplitude increases (Figure 3.9(b)). A particularly useful fea-
ture of these equations is their ability to predict the scattering behavior near
the monopole resonance base only on the cloud radius and the void fraction. In
Figures 3.8(a)-3.9(b) the solid line is célculated using the full wave expansion
(Eq.3.23) and the dashed line from the asymptotic expression (Eq. 3.30).
The asymptotic equations in Eg. (3.32) and (3.30) adequately predict
the behavior of the scatterer at frequencies near the monopole peak even
though the expansion used to obtain Eq. (3.33) is not mathematically valid
for the k.a > 1, as will usually bg the case for a low sound speed scatterer.
Perhaps the most interesting result is that using simple asymptotic expres-
sions we can easily predict Q, (Eq. 3.32), the TS surrounding the resonance
frequency (Eq. 3.30), and ¢, (Eq. 2.10b) to within an acceptable margin hav-
ing knowledge of only the cloud radius and the void fraction. Furthermore,
the monopole resonance for other cloud geometries (cylinders, spheroids, etc)
should be well approximated by these simple expressions provided that the as-
pect ratio does not vary considerably from unity. For such cases, we need only
the total gas volume in the cloud and total liquid volume enclosing the mixture
to determine the equivalent radius, void fraction, and therefore determine €,

TS, and c..

From Figure 3.9 it is evident that a 0.1 m-radius cloud with void fraction
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Figure 3.8: Peak monopole TS and frequency as a function of void fraction
for cloud radii @ = 0.1m and a = 0.25m using the exact series expansion
(solid) and the asymptotic expression (dashed).
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Figure 3.9: Peak monopole TS and frequency as a function of cloud radius
for a void fraction of # = 10~ and B = 1073 using the exact series expansion
(solid) and the asymptotic expression (dashed).
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1072 resonates at about 800 Hz with a target strength of about -11dB. The
latter two numbers are consistent with the observations of Adair and Huster
(Figure 1.4). Furthermore, the cloud size and void fraction suggested here
are not outside the realm of possibility (Monahan & Lu, 1990; Lamarre &
Melville, 1992). It would appear then that this model may have some valid-
ity. To examine this hypothesis further, a carefully controlled experiment was
recently conducted in a fresh water lake in New York state (see Part II of this

document).

3.5 Discussion and Summary

In this chapter the theory for acoustic scattering from a compliant sphere in
the free-field was presented. The solution for the scattered pressure at every
point in the sphere’s exterior is given by the normal mode expansion (Eq.3.12).
The classical solution was obtained by simply meeting the requirements én
the boundary of the sphere of continuous pressure and continuous normal
particle velocity and by exploiting the symmetry of the problem. Although
not limited to scattering from acoustically compact bubble clouds, this problem
yields itself to a simple and straightforward analysis using the well established
collective oscillations model for the effective sound speed and effective density
as outlined in Chapter 2.

In addition to the partial wave expansion, simple analytical expres-
sions were derived which approximate qualitatively, and semi—quahtitively,

the monopole resonance frequency , (Eq.3.32) and the TS (Eq.3.33) at this
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resonance of a bubble filled sphere. It was determined that the resonance
frequency and TS depend only on two physical characteristics of the bubble
cloud: the radius (a) and the void fraction (3). It is important to stress
that the monopole TS level and §2, can always be obtained without a detailed
knowledge of the bubble size distribution.

Since upper ocean dynamics (or even laboratory experiments) will not
likely produce spherical bubble clouds, it is obvious that other geometries
(cylinders, cones, ellipsoids, or arbitrary shaped volumes etc.) should be
explored. As in the solution presented in this chapter, the scattering form
function for other geometrical shapes can also be expressed as a series expan-
sion of monopole, dipole, quadrupole and higher order terms. But for long
wavelengths (i.e., A > 2ma), the monopole (volume) mode is the most im-
portant and thus the object can be assumed spherical. Then the scattering
can be expressed as a simple function, dependent only on the void fraction
and equivalent (spherical) radius. A comparison of a measurement with the
model presented here can be made if the total cloud volume and total volume
of gas injected into the bubble cloud are known, since the void fraction and
equivalent spherical radius are determined from these quantities.

The prime motivation in this effort was to solve the problem of sub-
kilohertz backscattering of sound from bubble clouds. At such frequencies, the
wave length of sound in water can be considerably greater than the gross di-
mensions of the cloud. As such, the choice of a sphere is appropriate. Selecting
a more complex geometry will not likely enhance the physical understanding of

the problem, except of course at higher frequencies. Furthermore, the assump-
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tion of uniform void fraction throughout the interior of the sphere, although
non-physical from an oceanographic stand point, is nevertheless a first step at

understanding the problem.
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Part 11

Acoustic scattering from bubble

clouds in the absence of

boundaries: Experiment
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Chapter 4

The Lake Seneca experiment:
Project overview and bubble

cloud generation

4.1 Introduction

The Office of Naval Research in the fall of 1988 initiated the Sea Surface
Scattering Special Research Program. From this program evolve a small
consortium of investigators advocating laboratory and lake experiments de-
signed to determine the mechanisms governing low—frequency sound scatter-
ing from bubble clouds. As a result, an experiment was designed to measure
the frequency—-dependent backscatter from a bubble cloud in fresh water (Lake
Seneca, NY) in the absence of boundaries and under known propdgation con-

ditions. In these efforts we did not set out to duplicate realistic salt—water
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clouds, but rather to obtain data to test and validate a low—freqﬁency bubble
cloud scattering theory.

A series of three experiments were performed in the Fall-"90, Summer—
'91, and Fall-’91. The experiments were conducted under conditions that
were generally calm: daily sound velocity profile measurements were taken
which showed isovelocity conditions from a depth of 65 m downrto the bottom
of the lake. The lake was roughly 160m deep at the test location, with an
additional 120 m of soft mud below this; the distance to the nearest shore was
over 1.5km. The initial experiment, performed at 25 m-depth, successfully
served as a qualitative proof of principle that bubble clouds are indeed efficient
scatterers of sound at frequencies below individual bubble resonance. However,
neither the cloud volume nor the bubble size distribution within the cloud
could be measured in situ , and therefore a subsequent modeling effort proved
untenable. In addition, the soufce used to insonate the cloud, a parametric
source (PS), relies on a nonlinear interaction of two colinear sound beams in
the water to produce a highly directional low frequency sound beam at the
differe.nce frequency. Concern existed that the observed scattering returns
were due to nonlinear ‘enhancement’ of the parametric source level caused
by the highly nonlinear bubbly fluid, rather than due to scattering from an
effective medium possessing low sonic velocity at frequencies below bubble
resonance (recall the collective oscillations model). This hypothesis, although
deemed unlikely, warranted further exploration using a conventional sound
source to substantiate the parametric source measurements. This required

that the experiment be performed at greater depth to insure that reverberation

102



from the lake surface did not contaminate the measurements.

To resolve these issues, a second test was performed in which a sub-
mersible video camera and both the PS and conventional sources (CS) were
deployed. The camera was mounted on the surface of the bubble maker to
record the size distribution of bubbles ejected from the needle tips and was
also used to image the cloud characteristics (i.e., shape, size, rise velocity,
and void fraction). The conventional sources played an important, but lim-
ited, role in the scattering measurements. The objective was to compare the
measurements from the PS and CS in order to belay the notion that paramet-
ric enhancement occurred. The advantage of a parametric source is that it
provides a highly directional low frequency Beam (at the expense of reduced
source level). This directionality results in reduced volume reverberation from
unwanted scattering sources in thé vicinity of the test range!. This effort con-
firmed that a PS is a viable tool to perform directional low frequency scattering
experiments from artificially generated bubble clouds.

The data collected during the second experimental effort verified that
excessive nonlinear enhancement did not occur and thus the PS was a viable
research tool for performing target strength (TS) level measurements. How-
ever, the parametric-source based scattering data was limited to frequencies
above 800 Hz due to low signal to noise levels. The third and most important
experiment was performed in the Fall of 1991 after reconditioning the PS to
enhance its output capability. In this effort, measurable scattering was ob-

served down to frequencies as low as 250 Hz. The data collected during the

1Fish and possibly other unknown apparatus deployed from the test platform. Ours was
not the only experiment being conducted at the time..
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final experimental effort clearly indicated that the bubble cloud possessed a
broad monopole resonance peak having a TS near -4dB at frequencies be-
tween 300 and 350 Hz. Both the TS and the monopole resonance frequency
of the cloud (€,) agreed to within experimental uncertainty with results from
the simple analytical model outlined in Chapter 3, given a measured bubble
cloud radius of @ = 0.38m and void fraction 8 = 5.4 x 107%. Recall that a
perfectly reflecting sphere having radius a = 21m possesses a target strength of
0dB. The fact that a 300 Hz sound wave incident on an acoustically compact
bubble cloud (a < 0.5m) can scatter sound in the free field so effectively is
remarkable.

Besides the PS, the most critical piece of equipment employed in these
efforts was the National Center for Physical Acoustics (NCPA) bubble cloud
generator, for without it this experiment could not have been performed. It
consisted of a pressurized steel air reservoir which was vented to the lake
by three concentric rings of 22-gauge hypodermic needles (48 needles total).
The bubbler could be operated in either a continuous mode in which a steady
column of bubbles was produced, or in a transient pulsed mode in which bubble
cloud bursts were introduced into the lake on demand. Air was supplied to the
bubble maker from a compressor located on the barge and the internal over—
pressure in the bubble maker and burst duration (the time that air was allowed
to flow freely through the needles) were regulated from the surface, allowing
bubble clouds to be generated on demand. The operation of the bubble maker
is discussed in detail in Section 4.2.

In this chapter, the operation of the transient bubble maker and bubble
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cloud characterization measurements are detailed. The total cloud volume,
the total gas volume injected into the cloud, the rise velocity, and the bubble
size distribution were measured non—acoustically using the video tape data.
These parameters are needed to estimate the void fraction and radius of an
equivalent volume.sphere. Finally, these measurement allow us to make a
comparison of the scattering measurements (see Chapter 5) with the simple

analytical model presented in Chapters 2 and 3.

4.1.1 Sound speed profile

Shown in Figure 4.1 are measured sound speed profiles obtained during the
Summer and Fall-‘91 efforts. Profiles were measured daily during the test by
lowering a thermistor chain from the edge of the test i)latform. The near sur-
face sound speed profile (< 10 m) was variable as one might expect. Figure 4.1
clearly illustrates that at depths below 61 m iso—velocity conditions prevailed.
This assured us that significant refraction of sound rays propagating across
the test range did not occur. Consequently, a ray launched at a declination
angle of 35.2° at a depth of 61 m will, in accordance with Snell’s law, have a
declination angle of 35.2° at a depth of 87.6m (300ft). For the calculations

presented herein, a sound speed of 1421.5 m/s was used.

4.2 Bubble maker deployment and operation

The heart of the experiment was the bubble cloud generator. Illustrated in

Figure 4.2, the bubble maker consisted of a submersible pressurized steel air
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Figure 4.1: Sound speed profile at Lake Seneca test site. The dashed line
represents sound speed for the Summer—‘91, and the solid line the Fall-‘91.
At a depth of 87.6 m (300 ft) the sound speed was 1421.5 mys.
reservoir which was vented to the lake by three concentric rings of 28-gauge
hypodermic needles (8, 16, and 24 needles per ring; 48 total). It could be
operated in either a continuous mode in which a steady column of bubbles
was prbduced, or in a transient pulsed mode in which artificial cloud bursts
were released into the lake. Air was supplied to the bubble maker from a
compressor located on the barge. The internai over—pressure in the bubble
maker and burst duration (the time that air was allowed to flow freely through
the needles) were regulated from the surface, allowing bubble clouds to be
generated on demand. A diagram illustrating the bubble maker is shown in
Figure 4.3 and its operation is described below.

The bubble maker was lowered over the edge of the barge to a depth

of 91.4m beneath the lake surface, or 3.8 m beneath the expected backscat-
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Figure 4.2: Photograph of the bubble maker.

ter target position (see Figure 5.1 for the layout of the test range) . It was
supported by a davit mounted on the top face of the barge with a 1/4-inch

steel cable. The depth of the bubble maker was determined using the cable
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Figure 4.3: Schematic of the Seneca Lake bubble maker.

meter used to deploy the hydrophones and the steel target sphere. In addi-
tion, an absolute electronic pressure transducer was mounted on the interior of
the bubbler, but exposed to its exterior. This provided a secondary means of
determining the depth by measuring the ambient hydrostatic pressure. Elec-
trical power was provided to this pressure transducer and the other electronic
elements (solenoid valves, and the AP transducer) via a 10 conductor sub-
mersible cable connected to the Bubbler Control Unit (affectionately named
Deep Thought) located inside the barge.

Since the hydrostatic pressure increases with depth, the bubbler depth
and internal pressure were increased incrementally, to prevent implosion. At
each 5m depth increment the lowering process was halted and several clouds

were released from the bubbler in order to purge water from the syringe nee-
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dles and to insure re—equilibration of the internal pressure to a le§el 10 psi
greater than the hydrostatic pressure at depth. Individual cloud releases were
visually monitored with the PhotoSea Cobra submersible video camera which
was mounted on the surface of the bubble maker (see Figures 4.2 and 4.3) in
order to confirm that air flowed freely through all the needles.

During the deployment phase, the internal pressure of the bubble maker
was maintained at 10 psi abéve the ambient hydrostatic pressure at a given
depth. To consistently and accurately maintain the over—pressure inside the
bubbler an electronic “regulator” system was designed which consisted of the
following components: an electric differential pressure transducer (AP); an
electronic input solenoid valve (normally closed); an air supply line pressurized
30 psi over the ambient pressure at depth and connected to the input solenoid;
and the bubble maker controller, Deep Thought.

The AP transducer measured the difference in the external hydrostatic
pressure relative to the interior of the bubble maker, transmitting it as a
voltage to Deep Thought. The overpressure was configured automatically con-
trolled and nominally set to 10 psi maximum and 9.5 psi minimum. Through-
out the experiment, Deep Thought continuously monitored the AP to assure
that the over—pressure did not drop below the preset value of 9.5psi. As a
precautionary measure, an analog pressure gauge displaying the difference in
internal and external pressure of the bubble maker was installed on the sur-
face of the bubble maker and was occasionally monitored using the underwater
video camera. Data from this pressure gauge was not recorded since the elec-

tronic transducers performed as expected.
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When AP fell below 9.5 psi, the bubble maker controller activated the
normally—closed “input solenoid” mounted inside the bubbler allowing air to
flow into the reservoir. Once the input solenoid was activated, the inflow of
air continued until AP reached 10psi. The pressurized air was provided by
a compressor located on the barge surface; as a safety backup, a compressed
nitrogen cylinder was also placed inline. The air source was pressurized to
. 30psi above the internal pressure of the bubbler in order to fill it quickly
as clouds were produced. In addition, air ﬁlters> (designed trap particulates
and fluids) were placed inline at the compressor output and the bubble maker
input.

Three concentric rings containing 8, 16, and 24 needles (22-gauge) were
mounted on the surface of the bubble maker (see Figure 4.2). Each pair of
needles, opposite one another on a given ring, were controlled via a single
normally—closed solenoid valve mounted in the interior of the bubble maker.
The burst duration, the time that air was allowed to freely flow from the
needle tips, and the opening of a single, pair, or all rings of needles were
controlled remotely from Deep Thought. The cloud production parameters are

summarized in Table 4.1.

AP= 10 psi | # Needles = 48
tourst = 3.4s | Depth = 91.4m

Table 4.1: Cloud generation parameters.

In Figure 4.4, the digitized and scaled output from the AP transducer
is displayed. A single cloud was released at t = 0's at which point the internal

over—pressure was 9.9 psi. As air exited the bubble maker, the internal pressure
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decreased. When the internal pressure reached 9.5 psi, the air supply input
solenoid valve was opened forcing air into the bubble maker; a corresponding
increase in the over—pressure is observed. To end bubble cloud production
(at time tpyst = 3.4s), the solenoid bank controlling the needle ports was
deactivated. Air from the supply line continued to fill the bubbler and AP
quickly returned to 10 psi, at which point the input solenoid was closed. Note
that in Figure 4.4, the over—pressure decfeases slightly during the next 40s
after the bubble cloud generation. This was casued by a pair of needles which
continuously released a few bubbles per second as viewed on the video monitor.

This leak was small and of negligible importance.
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Figure 4.4: Pressure difference (A P) between the lake and the bubble maker
at a depth of 91.6m as a function of time during a cloud release. The cloud
was released at t = 0 at which point the internal pressure decreased. The
electronic regulator was set to a 0.5 psi threshold at which point the input
solenoid was opened allowing air to enter the bubble maker.
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4.3 Bubble cloud characterization

In order to make .a comparison between the transient bubble cloud scattering
measurements and the model, it is necessary to have a detailed knowledge
of the cloud shape and volume, bubble size distribution, rise velocity, and
position. Since our interest is in backscattering, these values need only be
known when the bubble cloud passes through the backscatter target position
(recall Figure 5.1). With this information, the effective phase speed of sound
in the bubbly mixture can be estimated. Furthermore, by solving the bound-
ary value problem of the system, the backscatter TS as a function of frequency
can be determined. The solution of this problem will result in the resonance
frequencies or modes of the system, as well as the scattering cross section (or
‘target strength) as a function of frequency. However, our ability to measure
the physical attributes of the bubble cloud (especially the shape and spatial
distribution of bubbles) with accuracy was limited by various physical con-
straints. Therefore explicit agreement of the scattering model presented in
Chapters 2 and 3 with the measurements (Chapter 5) is difficult, except at
the lowest frequencies (i.e., ka < 1).

For low frequencies, where the bubble cloud is considered acoustically
compact, the shape is of secondary concern provided the aspect ratio does
not vary appreciably from unity. Recall that the lowest order mode of an
acoustically compact scattéerer ‘is dependent on the volume of the target and
thus the spherical model outlined earlier should be sufficient to predict the
monopole scattering characteristics of the bubble cloud. To estimate the TS

of a bubble cloud in the free—field at the lower fréquencies, only the volume
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fraction (8) and cloud radius (a) need to be known. These two quantities were
obtained by measuring the total cloud volume (V,,,q) and the total volume of
air (Vgas) injected into the cloud, since 8 = Vs /Veioud and Viioua = 4ma®/3. For
an acoustically compact bubble cloud, the bubble size and spatial distribution
is of minimal importance as long as the frequency of the incident wave is much
less than the resonance frequencies of the constituent bubbles (i.e., kR, <
ka < 1). To verify that the prior condition was satisfied, the bubble radius

distribution was also measured as well.

4.3.1 Bubble cloud rise time

The rising bubble clouds viewed on the monitor at a height of 3.8 m above
the bubble maker appeared to be nominally cylindrical shaped with a blunt
leading edge and a trailing skirt of bubbles. The distinction between the
‘skirt’ and the more densely populated regions of the bubble cloud was not
obvious and therefore an “educated—guess” was made. The video camera was |
deployed in the configuration shown in Figure 4.5. It was not possible to view
an entire bubble cloud at any instant in time. This was due to the short
separation distance between the bubble cloud and the submersible camera
(< 0.6m). These measurements were performed on the last scheduled day of
the experiment, preventing redeployment of the camera and lighting rig.

To determine the rise velocity, shape, and total volume of the bubble
cloud as it crossed the axis of the test range, video recordings were made.
During these measurements, the Photosea Cobra underwater video camera

and lighting system were mounted at the backscatter target position on the
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Figure 4.5: Video rig used to measure physical parameters of cloud at depth.

suspension cable 3.8 m above the bubble maker. A diagram illustratihg the
geometry of the camera and lighting station used to perform the rise time,
and cloud volume and shape measurements is shown in Figure 4.5. The video
camera was focussed on the plane perpendicular to the suspension cable and
the field of view was approximately 0.46 m vertical and horizontal in the focal
plane. The.viewing area is indicated in the Figure 4.5 by the triangular region.

The bubble cloud rise-time into the backscatter position was measured
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from a series of 30 bubble cloud releases separated by 10s intervals. From

the rise-time measurements, the cloud rise velocity and cloud length were
inferred. The rise-times for the upper and lower cloud boundaries to pass the
video camera relative to the beginning of cloud release (t = 0) were measured
using a digital stop watch. The top rise time was typ = 9.1 £ 0.5s and the
bottom rise time was tportom = 13.6 = 0.5 s, where the error indicates standard

deviation in the measurements.

4.3.2 Bubble cloud rise velocity

The velocity of the upper and lower boundaries of the bubble cloud were
deduced by dividing the rise distance (z = 3.8 m) by the appropriate rise times
as follows: Utop = 2/ttop, and Ubottom = Z/tbottom — thurst, Where tpyrsy = 3.4
is the burst duration (the length of time that air was allowed to escape from
the bubble maker needle tips). Consequently, i, = 0.41 & 0.034 m/s and
Upottom = 0.37 £ 0.012my/s, where the error is estimated using a modified
Taylor expansion as described in Appendix D.

The mean velocity of the bubble cloud, s = 0.39 £ 0.023my/s, is the
average of Uiop and Upottom- It should be noted that the cloud boundaries—top,

radial, and especially bottom—are not well defined and thus an “educated”

guess was made.

4.3.3 Bubble cloud length

The cloud length is given by the simple expression: L = Urise (tbottom — ttop)-

For the rise times and cloud velocity given above, the cloud length is: L =
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1.7+ 0.18 m.

4.3.4 Bubble cloud shape and volume

In addition to the difficulty of accurately determining the upper and lower
boundaries of the bubble cloud, the sides of the bubble cloud was not well
defined. Furthermore, the width of the rising bubble cloud exceeded the field
of the view on the video monitor because of the inadequate spacing between
the video camera and the rising bubble cloud (see Figure 4.5). To compensate
for this fact, the video camera was panned to the left of the cloud in order to
record an image of the right edge of the several rising clouds; similarly, the
camera was panned to the right to view an image the left half of several rising
clouds. In both cases, the cable used to lower the bubbler and to support the
video camera and lighting rig was kept in the field of view and used as a fixed
point of reference.

To determine the cloud shape and volume, the video tapes were played
back and the distance between the reference point (the support cable) and a
edge of the bubble cloud was measured as a function of cloud height (actually
rise time). Since the entire cloud did not fit into the field of view, a sequence
of photographs were taken directly from a video monitor. The 35 mm camera
used to take these snapshots was mounted on a tripod and focussed on the
video monitor. During the playback of a rising bubble cloud, the video tape
was paused when upper boundary of the cloud was near the top of the field
of view and a single photograph taken. Next, the video tape was advanced

1.4s (i.e., the amount of time required for a portion of the cloud visible on
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the lower part of the video monitor to rise above the field of view), paused,
and another snapshot taken. This process was repeated until an entire bubble
cloud had passed through the viewing area.

A total of seven photographic sequences of rising bubble clouds were

obtained (four right-side images, and three left-side images). A pair of these

- sequences, shown in Figure 4.6, were assembled and roughly illustrate the

shape of a single rising bubble cloud.

It is clear from Figure 4.6 that the spatial distribution of bubbles within
the cloud is not uniform, an assessment that is confused by the non-uniform
lighting used to illuminate the cloud. Thus, an attempt to estimate the spatial
bubble population density within the cloud was not made. In Figure 4.6, the
curvature or “bulges” indicated in each photograph of this mosaic is due to
distortion of the image by the video camera lens or its perspex pressure dome.
When viewed on the video monitor, the cloud appeared to “roll” rather than
rise.

The bubble cloud image in Figure 4.6 was divided into 32 segments
equal segments about the cloud length (dL ~ 5cm) and the radial versus
height profiles of the left and right hand edge of several clouds were éstimated
relative to the suspension cable. This radius-height profile was then used to
determine the total volume of the bubble cloud by accumulating the volumes
of conical frustum bounded by adjacent radii and height dL. A sample frustum

is illustrated in Figure 4.7, and the total cloud volume is given by
32

m
Veloud = 3 Z(G? +aiai41 + aiy,)dL,

i=1
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Figure 4.6: Mosaic of a bubble cloud. A series of snapshots were taken di-
rectly from the video monitor during tape playback. The images to the left
and to the right were not taken from the same cloud. However, the sequence
of photos in each column were obtained from a single rising bubble cloud. In
each column, each consecutive snapshot is separated in time by approximately
1.4s. Notice the variation in bubble population density. The dark vertical
stripe in the left portion of the image is the suspension cable used to lower the
bubble maker. Thus it is clear that the bubble cloud rose slightly off axis due
to a slight current in the lake.

where a; refers to the i-th radial element.- The total cloud volume then is

V;:loud': 222 + 0.027 [, where the radius-height profile is given in Table 4.2.
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Figure 4.7: Frustum of a cone. The total volume of the bubble cloud was de-
termined by accumulating 31 frustum volumes using the radial measurements

“in Table 4.2

4.3.5 Effective bubble cloud radius

Although the bubble cloud image in Figure 4.6 is clearly non—spherical, the
monopole scattering response (volume mode) can be estimated using the sphere
model outlined in Chapter 3. Thus for a spherical cloud of volume Voug =
222 + 0.0271, the radius of the cloud is @ = 0.37 £ 0.014m. We are now left

to determine the net void fraction of the bubble cloud.

4.3.6 Total gas volume measurement

To determine the total volume of gas injected into a single buBble cloud,
an precision electronic flow meter (Porter Instrument Co., Model 113) was
mounted inline with the bubble maker air supply line on the barge surface.
Vgas is a critical quantity needed to determine the void fraction, and thus used
to make an unbiased comparison of the model with the acoustic scattering

measurements. The voltage output from the flow meter is proportional to the
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Table 4.2: Radius versus height profile of the Lake Seneca bubble cloud.

Height | Radius | Volume Height | Radius | Volume
(m) | (m) | () (m) | (m) | (1
0.00 | 0.106 | 2.150 085 | 0.234 8.6
0.05 | 0.121 | 2.506 096 | 0.238 9.3
0.11 0.124 3.044 1.0 0.24 9.2
0.16 | 0.146 | 3.949 1.1 0.23 9.1
0.21 0.162 4.755 1.1 0.23 9.2
0.27 0.176 5.391 1.2 0.23 9.0
0.32 | 0.183 | 5.777 1.2 0.23 8.6
0.37 | 0.188 | 5.961 1.3 0.22 8.2
0.43 | 0.189 | 6.227 1.3 0.22 7.9
0.48 0.197 6.725 14 0.21 7.6
0.53 0.204 7.113 14 0.21 7.2
0.58 0.208 7.436 1.5 0.20 6.8
0.64 0.214 7.777 - 1.5 0.20 6.2
0.69 0.218 8.058 1.6 | 019 | 59
0.74 0.221 8.437 1.7 0.19 6.0
0.80 0.228 8.931 1.7 0.19

Note: In the middle columns, the cloud radius as a function of height is given.
In the third columns, the volume element (in liters) of a slice of a right circular
cone is given for consecutive radial pairs. The total cloud volume is obtained
by summing the volume elements (see Figure 4.7).

mass flow of gas in standard liters? through the apparatus. During a cloud
release, the voltage output from the flowmeter was digitized and integrated
with respect to time, and scaled to yield the total volume of gas in standard
liters (Via). Then Vg = (Via/Fh) - 10°Pa, by the ideal gas law. Here,
P, = 9.82 x 10° Pa is the ambient hydrostatic pressure at a depth of 87.6m

beneath the lake surface.

As a bubble cloud was released from the bubble maker, AP immediately

20ne standard liter is equivalent to one liter at atmospheric pressure (i.e., , re 10% Pa)
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decreased (recall Figure 4.4). When AP reached 9.5 psi, the input solenoid
was opened allowing air to flow into the bubble maker. The air flow entering
the bubble maker, as illustrated in Figure 4.8, increased rapidly after the input
solenoid was opened (t = 1.2s), leveled off (¢ = 3.4s), and decreased after the
bubble maker reached its equilibrium internal over—pressure when the input

solenoid was closed (t = 65s).
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Figure 4.8: Digitized flow meter output as a function of time during a cloud
release. The output was integrated and scaled to yield the total air volume
injected into the cloud, nominally 1.22 & .0141.

During the Seneca—2 experiment, the mass flowmeter output from total
of 112 cloud releases was digitized at 10 points per second. The data from
each cloud release was integrated and scaled to yield the cumulative mass
flow in standard liters. This quantity was then converted to the equivalent gas
volume at a depth of 87.6 m beneath the lake surface (the expected backscatter
position of the bubble cloud). Over the course of the experiment, and for the

cloud generation parameters listed in Table 4.1, the measured total gas volume
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injected into the Lake Seneca bubble cloud was Vgas = 1.224.014 [, where the
error is the standard deviation of the measurements (recall that the total cloud
volume was Vyjouq = 222 & 0.0271). Thus, the mean void fraction for a single
Lake Seneca bubble cloud was 8 = 0.0055 £ 0.001.

As discussed in Chapter 2, the sound velocity in the bubbly mixture is
well approximated by the Wood expression (Eq.2.9) and is only dependent on
the void fraction when the driving frequency of the acoustic wave is well below
the fundamental resonance frequencies of the constituent bubbles. However,
for large ambient pressures, like that experienced by the bubbles during the
this experiment, the mixture sound speed is known to diverge from the low
frequency limiting expression (Commander & Prosperetti, 1989). After simple
algebraic manipulation and an order of magnitude ana,lysis, it is clear that an

improved approximation to the Wood equation can be derived from Eq. (2.24)

¢, — kP % (4.1)
O\ 1-8)B) '

Eq. (4.1) is termed the modified Wood expression.

Using the estimated values of the void fraction and cloud radius and
applying Eq. (4.1), (3.32), and (3.33), the low frequency phase speed (c.),
monopole resonance frequency (£2,) and backscatter TS of the Lake Seneca
bubble cloud can be estimated—assuming a spherical cloud. A further as-
sumption made here is that the resonance frequencies of all the bubbles con-

tained in the Seneca cloud are much greater than €, (this will be discussed in

the next section).
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4.3.7 Bubble radius distribution measurements

With the video camera and lighting rig deployed 3.8 m above the bubble maker
as in Figure 4.5, it was not possible to accurately measure the bubble size dis-
tribution in situ . However, with the video camera mounted on the top surface
of the bubble maker (as shown in Figure 4.2), imaging the size distribution of
bubbles produced at a single needle tip was possible.

The Photosea Cobra video camera could be focussed down to very short
distances (even onto its own perspex pressure dome), enabling us to place it
very close to a single needle tip and observe single bubbles as they were re-
leased. In addition, the camera was shuttered so that the rising bubbles were
not blurred depreciably, and we could therefore make precise BSD measure-
ments. A frosted semi-opaque screen was mounted a few cm behind one of the
needles and used to diffuse the background lighting from the 500 Watt Halo-
gen bulbs. On the diffuser, a millimeter scaled ruler was secured as a second
reference calibration for the measurements. In addition, the diameter of the
22 gauge needle, 0.7 mm, was used as a reference measurement. In Figure 4.9
a digitized image as viewed from the submersible video camera mounted on
the surface of the bubble maker and focused on a single needle tip is shown.
As was generally the case, only a few bubbles per image were in focus due to
the narrow field of view. The internal over-pressure in the bubble maker was
set to 10 psi and the bubble maker was pulsed for 3.4s to generate a cloud.

Images of newly formed and rising bubbles were recorded on video tape.
The size distribution of in—focus bubbles emerging from the needle tip were

then measured directly from the surface of a video monitor during tape play-
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Figure 4.9: Bubbles released from single needle tip as viewed from the sub-
mersible video camera. The scaled ruler (mm gradations) is visible on the
right. The bright spot in the center is due to the intense lighting needed to
illuminate the rising bubbles.

back. A digitized video image is shown in Figure 4.9. Here, it is clear that the
newly formed bubbles had not yet reached an equilibrium shape, and. many of
the bubbles are blurred due to the narrow focal plane. Because the majority
of the bubbles were not spherical, it was essential to measure both the major
and minor axis of the bubbles. The bubble volume was estimated using simple

geometric formulas for the volume of oblate and prolate spheroids:

4
V:)blate = _3—a2b>

47
V;)rolate = —3—(11)2,

where, a and b are the semi-minor and semi-major axis respectively.
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It is likely that the observed spheroidally shaped bubbles were prolate
(i.e., link sausages), rather than oblate (i.e., pancakes), since they were force-
fully ejected from the needle tip and had not yet obtained an equilibrium
shape. Once the bubble volume was determined, the equivalent spherical bub-
ble radius and corresponding statistical distribution were calculated and are
illustrated in Figure 4.10 and listed in Table 4.3.

Since the radius of these bubbles are in the range 0.42 mm to 2.93 mm,
then at a depth of roughly 91 m the range of bubble resonance frequencies
is bounded roughly by 2.9kHz and 20kHz, according to the Minneart reso-
nance frequency (Eq.2.21). Thus, for all acoustic frequencies below about
2.0kHz, the speed of sound in a cloud composed of these bubbles should be

well approximated by the modified Wood expression (Eq. 4.1).

Mean 1.55mm | Min 0.42mm
Std. Dev. | 1.40mm | Max 2.92 mm
Counts 159 | Range | 2.5mm

Table 4.3: Statistics from in situ BSD measured slightly above a single needle
tip at Lake Seneca.

In Figure 4.10, there are clearly three visible peaks located at R,; =
0.39mm, R,» = 1.45mm, and R,3 = 1.95mm. This BSD data was fitted to

a triple-Gaussian curve

(a=Rg.1) (a=Ry2) (a—R, 3>)2

f(a)zAle_( 7 )+A2e'( 72 )+A3e’( € (4.2)

using a nonlinear léast~squares method. The parameters obtained by the fit

are given in Table 4.4.
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Figure 4.10: Bubble size distribution measured just above a single needle tip
at Lake Seneca. The curve represents a triple-gaussian non-linear least squares
fit to the measured data. For phase speed calculations the fit is truncated
between 0.1 mm and 3.2mm.

Mean | Std. Dev. | Amp.
(mm) (mm)
Peak 1 | 0.391946 | 0.59941638 | 8.962
Peak 2 | 1.44917 | 0.2074013 | 19.679
Peak 3 | 1.947760 | 0.60210049 | 12.982

Table 4.4: Parameters obtained from a nonlinear least-squares fit of the
in situ BSD to a triple-Gaussian curve.

In Fig. 4.11, the frequency dependent phase speed versus frequency
curve for the Lake Seneca bubble cloud is shown for each of the measured

bubble size distributions (i.e., monodispersed, discrete, and Gaussian). For the
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monodispersed distribution, the equilibrium bubble radiﬁs is R, = 1.55 mm,
the volume fraction is B = 0.54x 1072, and the ambient pressure is P,, = 9.82x
10° Pa. For the discrete distribution, the mixture sound speed is calculated
using the radius and amplitude values shown in the histogram of Figure 4.10.
Finally for the Gaussian fitted bubble radius distribution, the triple Gaussian
fit (Table 4.4) to the histogram in Figure 4.10 is applied. Note that in all cases,
the phase speed is independenf of frequency well below the bubble resonance
frequency. In the low frequency limit the calculation of the mixture sound
speed yields ¢, = 464 mys. This compares favorably with the modified Wood
expression (Eq.4.1) value of 468 m/s in the adiabatic limit (kx — ). In the
isothermal limit (k — 1), the modified Wood expression predicts a sound

speed of 402 mys.

4.4 Summary

Artificial transient bubble clouds were generated at a depth of 87.6 m beneath
the surface of a freshwater lake for the purpose of conducting an acoustic
backscattering experiment. Although the bubble cloud image in Figure 4.6 is
clearly non—spherical, the monopole scattering response (volume mode) can be
estimated using the sphere model outlined in Chapter 3. Thus for a spherical
cloud of volume Viguq = 222 4 0.0271, the radius of the cloud is a = 0.376 &
0.014m. In Table 4.5, the values obtained during the prdcesses described

herein are summarized.

127




10000

E
-
g
w 1000 £
9 3
<
<=
[a®
100 : i
100 1000

Frequency (Hz)

Figure 4.11: Effective phase speed versus frequency for the Lake Seneca bub-
ble cloud using monodispersed (solid line), discrete (jagged-dashed line), and
Gaussian (smooth—dashed line) bubble size distributions. Here the void frac-
tion is A = 0.55 x 1072, and P,, = 9.82 X 10° Pa. For all frequencies of interest
in this experimental analysis (i.e., below 2000 Hz, the sound velocity in the

mixture asymptotes to 460 m/s.

Table 4.5: Lake Seneca experimental precision analysis.

(a) Measurement

Relative
Mean Uncertainty
Parameter Value Uncertainty (%)
P, (Pa) 958774 15336 1.60
Vaosd (D) 992 27 12.28
Viws (D) 12 01 11.48
¢ (mys) 14215 0.000 0.00
e (m) 0.376 0.014 3.72
5} 0.55 0.001 16.80
(b) Predictions
p. (kg/m®) | 99473 0.928 0.09
c. (m/s) 402.05 31.049 772
Q, (Hz) 294.088 25.213 8.57
koa 0.489 0.046 9.35
TS (dB) —2.998
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Chapter 5

The Lake Seneca experiment:
acoustic backscattering

measurements and analysis

5.1 The experimental test plan

The Lake Seneca facility consisted of two moored barges in a water depth of
130 m, with the smaller barge (called the TCP barge; 10.7m x 42.7 m) serving
as the platform for the test range. Equipment was deployed with the use of
davits, a cable meter, and the edge of the barge, with the resulting vertical
geometry shown in Figure 5.1. Transmitters and receivers were oriented co—
linearly, with the axis of the range intersecting the path of a rising bubble
cloud. A depth of 87.6m was chosen for the target backscatter position in

order to minimize both surface reverberation and volume reverberation (i.e.,
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from fish, etc.) in the vicinity of the staging. Because of the deployment depth
and the extent of the test range, the lake surface did not play a role in the
backscattering and thus a comparison of the scattering measurements with the

free—field model presented in Chapter 3 is facilitated.
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Figure 5.1: Layout of the test range. The receivers in the backscatter direc-
tion are denoted by H1, H2, and H3. Hydrophone H4 is in the forward direction
and was used primarily to measure noise emissions from newly formed bub-
ble clouds (Nicholas et al., to be submitted). H3 and H1 were also used as
a conventional sources (CS1 and CS2, respectively) during some of the tests.
The PS beamwidth is indicated approximately by the region between the solid

lines.

The backscatter target strength of the rising bubble cloud was mea-

sured over frequencies ranging from 250 Hz to 14 kHz using both conventional
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and parametric sources. Over the course of the measurements, the source

repetition frequency was fixed at either 1 or 2Hz and the incident pulse
léngth made to vary from 8 to 15 ms. Calibrations of both the frequency-
dependent source 1evel and beamwidth were performed in situ and were nomi-
nally 177dB (re: 1 pPa at 1m) and 8.0°, respectively (at 1.0kHz). In addition,

H1/CS2 and H3/CS1 were used as conventional sources in some of the tests.

5.1.1 The parametric source

Accurate target strength measurements are difficult to acquire as the frequency
of the source is lowered, pribmarily because of the difficulty of radiating sound
with narrow beam widths in order to avoid boundary reflections and excess
volume reverberation within the sea. Conventional acoustic projectors (i.e.,
piston sources) capable of the necessary beam widths (< 10°) are both cumber-
some and expensive. Furthermore, a conventional source radiates a significant
amount of energy into the sidelobes. For a conventional projector, a 10-m
diameter transducer aperture would be required to produce a 10° -3 dB! beam
width at 1000 Hz (Konrad & Geary, 1991).

With a parametric source, a narrow beam with negligible side lobes is
produced from a manageable sized projector. A 10° beam width at 1000 Hz
can be achieved using a 0.75 m diameter aperture. In addition, the same source
can be effectively used at frequencies between 500 and 7000 Hz. The PS pro-
duces these unique characteristics by simultaneously radiating sound at two

much higher frequencies (called primaries) in collinear beams, and capitaliz-

1A -3dB beam width refers to the half power points on the main lobe of the beam.
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ing on the inherent nonlinearity of the water to convert some of the primary
energy into sound at the difference frequency of the two primary waves. The
resulting sound beam is a combination of the large amplitude primary waves
and the somewhat lower amplitude (about 40dB down) “sum” and “differ-
ence” frequencies. Acoustical mixing occurs only within the overlap zone of
the primary beams, and thus the difference frequency is generated in a long
virtual end—fire array extending outward from the source. The fundamental
disadvantage of this source is its low efficiency, typically less than 5%, and
consequent need for relatively high input powers. HoWever, in the generation
of short pulses on the order 100ms and for duty cycles under 5%, the energy
requirements are relatively easy to meet. |
The parametric source used in this experiment was Section—4 of NUWC’s?

(formerly NUSC?) TOwed Parametric Source (TOPS), which is well charac-
terized in Scientific and Engineering Studies: Nonlinear Acoustics 1954 to
1983. The source was deployed to its maximum depth of 61 m (200ft), us-
ing sections of 6” diameter steel pipe. The fundamental design frequency of
TOPS was 22kHz. The two primary frequencies are symmetrically up and
down shifted relative to 22 kHz. The signals were time gated and amplified by
a 20kW drive amplifier. Thus, to deliver a difference frequency fo = 500 Hz
into the test range, the source was simultaneously driven at primary frequen-
cies of fi = 21.75kHz and f, = 22.25kHz. The source is compact, quite
directional, and has a negligible side lobe structure compared to a CS. To

perform the measurements described herein at difference frequencies less than

2Naval Undersea Warfare Center
3Naval Underwater Systems Center
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2 kHz, a low-pass filter (2kHz) was inserted at the output of each hydrophone
in order to remove the primary source frequencies. A measured beam pattern
for the PS driven at fo = 500Hz is illustrated in Figure 5.2. The beam pat-
tern was obtained at receiver H1 (recall Figure 5.1) by tilting the PS about the
polar (vertical) axis. In Table 5.1, the -3 dB beamwidth is listed for frequencies

between 500 and 4000 Hz.

I:
'y
i

|

Figure 5.2: Parametric source beam pattern obtained for fo = 500 Hz. The
source was tilted about its vertical axis and the resulting beam pattern mea-
sured at receiver H1. The smallest angular and radial units on the grid are
separated by 1° and 1dB respectively. Thus, the —3 dB beamwidth at 500 Hz

is £4.25° or 8.5° total.

5.1.2 Bubble cloud generation

The heart of this experiment was the bubble cloud generator (Figure 4.3). Air
from a steel enclosure, pressurized to AP = 10 psi above the ambient pressure

in the lake (i.e., AP = Pternal — Phydrostatic), Was vented into the lake through
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Fq (Hz) | SL (dB) | BW (-3dB)
500 167 8.5°
1000 177 8.0°
2000 185 7.0°
4000 193 6.5°

Table 5.1: Frequency dependent source level and beam width for the para-
metric source. These measurements were performed by tilting the PS about
the vertical and using receiver HI.
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an array of ports opened via solenoid valves controlled from the surface (see
Section 4.2 for a more comprehensive discussion). Each port was capped with
a 22-gauge hypodermic needle, the end of which was cut perpendicular to the
needle shaft (“pipetting needles”). In all there were 48 ports arranged in a
circular array of three concentric rings of radii 6.4cm (containing 8 ports),
12.8 cm (containing 16 ports), and 19.2cm (contéining 24 ports).

Pressurized air was supplied to the steel enclosure from a compressor
located at the surface. After suitable pressure regulation and filtering, the
total mass of air supplied to the apparatus was recorded using a precision
mass flowmeter. The relative pressure between the air in the enclosure and
the ambient lake pressure (AP) was continually monitored using an electronic
differential pressure transducer; during the venting process, if AP dropped be-
low a preset tolerance, a solenoid valve was opened which enabled compressed
air from the supply to enter the pressurized steel enclosure and thus to reestab-
lish the operating overpressure. The regulated air pressure at the compressor
was typically 20 psi greater than the internal pressure in the bubble maker.

Bubble clouds were generated in the following manner: At the surface,
the overpressure and burst duration (the time that the solenoid bank was
opened) were configured to 10 psi and 3.4s respectively. Clouds were released
on demand (by pressing a button), resulting in the formation of rising bubble
cloud. The bubble clouds were nominally cylindrically shaped with at blunt
leading edge and a trailing skirt of bubbles. The rise velocity of the cloud
was approximately 0.4mys, and the total cloud volume and total gas volume

contained within the cloud were Vioua = 2221 and Vig,s = 1.221, respectively.
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The total cloud volume and rise velocity were determined from video recorded
data, and the total gas volume from the electronic precision mass flow meter.
Although the spatial distribution of bubbles in the cloud was not uniform
(recall Figure 4.6), the average void fraction was determined to be 8 = 0.0055

and the equivalent volume spherical radius was ¢ = 0.376 m.

5.2 The measurement of target strength

In Appendix A the standard definition of the backscatter target strength is
given and the process of performing an experimental measurement is described.

The relationship between the theoretical backscatter TS and its measurement

is given by:
TS = 20log Ps ,
. tlp=1m
EV Rsy :
= 20log ——— — 20log ———— — (Gecho — Gmb), Al

where the terms MBV and EV refer to the respective “steady-state” main
bang and echo voltage amplitudes measured from a particular hydrophone; the
term 20 log R_;:%T_E accounts for the total transmission loss in dB (each factor
in this term is assumed to be divided by the reference distance of 1 m); and the
difference in receiver gain settings for the echo versus main bang measurement
is given by the G terms. Note that the TS measurement is independent of the

source level and the hydrophone calibration coefficients as long as the main
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bang and echo signals are processed from a the same receiver.

5.3 Test range layout

In Tables 5.2(a) and (b) the layout of the test range is specified for the Seneca—
2 and Seneca-3 tests respectively. Four receivers (ITC #7001., 6” spherical
ball), labeled H1-H4 were lowered over the edge of the TCP barge to the
depths indicated in Tables 5.2(a) and (b). The hydrophones were first lowered
over the side of the barge and the horizontal spacing on the surface measured
relative to the PS (column H). The parametric source was deployed to a depth
of 69 m (200 ft) using lengths of 6 in diameter steel pipe. The hydrophones were
then lowered, resulting in the alignment indicated in Figure 5.1. In Column
V of Tables 5.2, the vertical depth of each receiver (measured with a Durant
Model 5-d-8-1-CL cable meter) relative to the PS source depth is indicated.
Slight adjustments to the depth of each phone were made to insure that they
were located on the main response axis of the PS.

The slant range distance Rgg, and thus the depth, of each hydrophone
were accurately determined by performing several time—of-flight measurements
of short pulses propagated from the PS using the 22kHz carrier beam. The
slant range distances between the source and each receiver (Rsy = VH2 + V2 )
are summarized in column Rgy of Table 5.2.

In Table 5.2, At = tecno — tmp refers to the expected time delay for an
echo return relative to the passing of the incident main bang pulse at a partic-

ular hydrophone. The transmission loss factors (TL) account for the 1/R de-
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Table 5.2: Range layout and transmission loss factors.

(a) Seneca—2

H A% Rsy At 0 TLsy TLsyt TLty TLF
(m) | (m) | (m) | (ms)|(deg) | (dB) (dB) (dB) (dB)
PS 00.00 | 00.00 ; 00.00
H3 17.90 | 13.02 | 22.13 | 33.26 | 36.03 | 26.90 33.21 27.47 -33.78
H2/CS2 | 23.53 | 17.01 | 29.03 | 23.55 | 35.86 | 29.26 33.21 24.47 -28.43
H1 28.92 | 20.73 | 35.58 | 14.34 | 35.63 | 31.02 33.21 20.16 -22.35
Target | 37.20 | 26.67 | 45.77 35.64
H4 39.21 | 26.67 | 47.42 34.22
Bubbler | 37.20 | 30.69 | 48.23 39.53
(b) Seneca~3.
Horiz | Vert RSH At g TLSH TLST TLTH TLF
(m) | (m) | (m) | (ms) | (deg) | (dB) (dB) (dB) (dB)
PS 0.00 | 0.00 | 0.00
H3 17.83 | 12.78 | 21.94 | 33.19 | 35.62 | 26.82 33.17 27.46 -33.80
H2 23.34 | 16.73 | 28.72 | 23.65 | 35.63 | 29.16 33.17 24.51 -28.52
H1 28.72 | 20.58 | 35.33 | 14.35 | 35.63 | 30.96 33.17 20.17 -22.38
Target | 37.01 | 26.52 | 45.53 35.62
H4 43.07 | 30.86 | 52.98 35.63
Bubbler | 37.01 | 30.21 | 47.77 39.22

Note: The items deployed are listed in the first column. Column-H lists the
horizontal separation of each item relative to the PS location; Column~-V lists
the depth of each item beneath the PS; Column-R lists the direct path be-
tween the PS and each element; At is the expected time delay between the
reception of incident and scattered pulse at a particular hydrophone; 6 is the
declination angle between the PS and the element, relative to the horizontal.
The transmission loss factors for the distances Rsy, Rsr, Rry and the to-
tal transmission loss factor, TL are listed in the remaining columns (refer to
Figure 5.4).
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crease in signal amplitude ‘due to spherical spreading of the signal between the
source-hydrophone (Rsy), source-target (Rsr), and target—hydrophone dis-
tances (Rry), as indicated in Figure 5.4. (The sonar equations which describe
the transmission loss factors and the backscatter target strength measurement

are presented in Appendix A.)

Source

; Target

Figure 5.4: Scattering geometry for a single hydrophone and the target not
in the backscatter position. Rgy is the distance between the source and the
receiver; Rgr is the distance between the source and the target; and Ryr is
the distance between the target and the hydrophone. When the target is in
the backscatter position, Rsr = Rur + Rsy.

The transmission loss factors between the source-target and target-
hydrophone are listed Columns T Lsr and T'Lry of Table 5.2, where T'Lgr =
20log,o(Rsr) and TLgr = 20log,o(Rry). The total transmission loss factor
for the target in the backscatter position is TLF = 20 loglo(ﬁﬁlf;;) are given
in Column TLF. For the case of a rising bubble cloud, however, the target is not
stationary. The bubble cloud is assumed to rise vertically (see Section 4.3.1),.

and thus the separation distances Rsr and Rry (and therefore, the TLF) are
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simple functions of the rise time and vertical rise velocity of the bubble cloud
(horizontal drift was not accounted for). -

The test range parameters given in Table 5.2 describe the special case
when the bubble cloud crosses the axis of the test range (i.e., backscattering).
However, since the bubble cloud position is not held fixed (since it is rising),
the transmission loss factors that are needed to determine the time—evolving
target strength are functions of cloud position, and therefore, functions of time
relative to the cloud release. In general, the total transmission loss factor for
the'experimental geometry described here is given by TLF = TLgg — TLgr —
TLry, v?here the subscripts SH, ST, and TH refer to the distance between
source-receiver, source-target, and target-receiver, respectively (for example
TLsr = 20log(Rsr)). For a rising bubble cloud, however, the range distances-
Rst and Rty can be determined as a function of time relative to cloud release,
and therefore, the total transmission loss factor is calculated at each increment
of time. Assuming that the cloud rises vertically, then the distances Egsr and

Rrpy are given by

=

(5.1)

Rry = [(Xoubbler — Xree)” + (Youbbler — Urise - t = Yreceiver)’] *,  (5.2)

Rsr = [(Xbubbler)2 + (Ybubbler — Upise * t)z]

W=

where the X and Y coordinates are given in Table 5.2 relative the PS origin,
and upee = 0.39mys. Shown in Figure 5.5 are the calculated rise-time de-
pendent total transmission loss factors used to determine the target strength.

Note that at ¢ ~ 11s, the total transmission loss factor corresponds to the
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values given in Tables 5.2(a) and 5.2(b), respectively.
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Figure 5.5: Total transmission loss factor for receiver H1 as a function of
bubble cloud rise-time relative to cloud release. The dashed line corresponds
to the total transmission loss correction applied to the Seneca~3 data, and the
solid line for the Seneca-2 data. When the cloud is in the backscatter position,
t ~ 11s, the TLF corresponds to the values given in Table 5.2.

5.4 Signal conditioning and recording

~ The receivers deployed axially along the PS beam were used to measure the
incident main bang signal and scattered or echo signals. A schematic illustrat-
ing the instrumentation used to acquire the data from a single hydrophone is
shown in Figure 5.6. Its operation is described as follows: First, the source
was configured to send a steady stream of pulses of specified pulse width and
difference frequency (fa) at a repetition rate of either 1 or 2Hz. The main

bang signals were received on each of the hydrophones H1-H3, and continued
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to propagate toward the target. The target responds by scattering sound in all
directions, and the backscattered echo contribution (EV) was recorded from
hydrophones H1-H3. In order to remove the large amplitude PS primaries
(=~ 22kHz) from the received waveforms, a 2kHz passive low-pass filter (a
single pole RC filter with -6 dB/octave insertion loss) was placed inline prior
to pre-amplification; during the conventional source tests these filters were
removed. The signals acquired at each hydrophone were fed into an Ithaco
(model 453) pre-amplifier set to variable gain and including a 100 Hz high
pass filter. The pre—arﬁpliﬁer gain was adjusted to maximize the main bang
and the echo voltages geﬁerated by each hydrophone within a 1 Ve, range
(the input range of the recording tape deck).

Following pre-amplification, a KronHite (model #3343) active low pass
filter set one to two decades above the difference frequency was installed to
insure that the signal recorded on the tape deck lacked frequency components
outside the range of the recorder at its lowest possible recording speed at
a given driving frequency. In addition, this filter served as an anti-aliasing
filter, since the tape recorded data was to be digitized after returning to the
laboratory. The incoming main bang and echo signals from hydrophone H1
were monitored in situ using a LeCroy 9450 digital oscilloscope in order to
confirm correct range alignment and to confirm that scattering did indeed
occur as the cloud ascended through the main lobe of PS beam.

The signals were recorded on a 3/4-inch reel-to—reel tape deck (Teac SR31-
DF) with 7 recording tracks. The tape deck was capable of operating at one of

nine variable speeds and each channel was recordable in either a FM or Direct
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recording mode. The frequency response and signal to noise ratio for these
operating speeds is shown in Table 5.3. For the majority of the data recorded,
the tape speed was set to 38cmy/s however, tapes speeds of 19 and 76 cm/s
were also utilized. For the echo measurements, the preamplifier gain was set
high enough such that the incident main bang signal saturated the amplifier
output and the tape deck input. This did not have a detrimental effect on

the recorded data as the equipment had sufficient time to recover from these

saturations.
FM mode Direct mode

Speed Frequency Range | S/N ratio Speed Frequency Range S/N ratio

(cm/s) ( kHz) (dBrms) (ecm/s) | (Hz) — (kHz) | (dBrms)
152.40 DC — 40 49 152.40 300 — 300 30
76.20 DC — 20 49 76.20 200 — 150 30
38.10 DC — 10 49 38.10 100 — 75 30
19.05 DC — 5 48 19.05 100 — 37 30
9.52 DC — 25 46 : 9.52 100 — 18 30
4.76 DC — 125 44 4.76 100 — 9 30
2.38 DC — 0625 44 2.38 100 — 4.5 30
1.19 DC — 0313 42 1.19 100 — 225 30
0.59 DC — 0.156 40 0.59 — —

Table 5.3: Tape deck (Teac SR31-DF) specifications.

Shown in Figure 5.7(a), is a cartoon of a tape segment illustrating a
sequence scattering measurements recorded to tape for a particular driving
frequency. The reel-to—reel recorder were capable of recording 7-tracks of
data simultaneously, only the first four are shown in the figure. During the
Seneca—2 experiment, a recording of the incident main bang signal was made
from all hydrophones prior to a series of cloud releases. The pulse repetition
frequency was set to 2 Hz, the preamplifier gain was set to Gy, (arbitrary, but
dependent on the driving frequency) and roughly 60 pulses or 30s of data were

recorded to the analog reel-to-reel tape. At this gain setting, the specular echo
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from the target often appeared to be buried in the background noise.

Prior to recording the sequence of scattering measurements from rising
bubble clouds, the preamplifier gain (Gecho) Was adjusted in order to max-
imize the specular return of the backscatter signal within a 1 Vpey range.
Typically, the difference in preamplifier gain settings (AG = Gecho — Gmb)
exceeded 20dB, or a factor of 10 in signal amplitude. After determining the
appropriate gain setting for the backscatter measurement at a given driving
frequency, a minirﬁum of three cloud releases were recorded to the reel~to-reel
tape units. Following this sequence of measurements, the source frequency
was modified and the process repeated. In Appendix B, a table listing the
recording parameters and test schedule for the Seneca-2 test can be found.

In contrast, during the Seneca-3 test the main bang and backscatter
echo signals were recorded simultaneously as illustrated in Figure 5.7(b). This
obviously required double the number of pre-amplifiers and filters, but less
overall time per frequency run (recall Figure 5.6). In addition, the advantage
of this recording configuration is a 1:1 correspondence between the main bang
pulse and the backscattered echo pulse. In Appendix C, a table listing the
recording parameters and test schedule for the Seneca-3 test can be found. The
data tapes from both experiments were digitized and processed after returning
to the lab. In Chapter 5, the digitizing process and subsequent data analysis
is described.

In Figure 5.8, a photograph of the main equipment rack used during
thié experiment is shown. It contained the pre-amplifiers (bottom) and a set

of three active low—pass filters (KronHite #3343) used to condition the incom-

146



No Cloud Cloud 1 Cloud 2 Cloud 3

. Hl Gm Hl Gev . Hl Gey Hi  Gev
% H2 Gmb H2  Gev H2  Gev H2 Gev
S H3 Gmb H3 Gey H3 Gev H3 Gey
e < H4  Gmb H4  Gey H4  Gey H4  Gey
~
Time N
) [l
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(b) Seneca-3 tape segment.

Figure 5.7: Sample reel-to-reel tape segments (elapsed time) for the Lake
Seneca experiments. The tape deck was capable of recording 7 data tracks
simultaneously and the signals recorded to each track is listed above. The
signals recorded and preamplifier gain settings used are indicated here only
for tracks 1-4. Signals were recorded to tape for approximately 60s per cloud
release. In the region between data runs a 2s calibration tone was recorded.
Note: Due to the instrumentation setup used in the Seneca-2 effort, a single
main bang recording was conducted prior to a series of cloud releases. Dur-

- ing the Seneca—3 experiment, the main bang and echo recordings were made

simultaneously.

ing signals prior to recording on the analog tape deck. Above the recording
filters are located a trio of WaveTek #753A “Brick—Wall” filters which were

configured to narrow band-pass the conditioned signals in order to monitor
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the backscattering results “on-line” with the LeCroy 9450 digital oscilloscope.
Above the oscilloscope is a signal generator and the Deep-Thought bubble
maker controller unit. On top of the equipment rack is a digital volt meter

- used to monitor the differential pressure transducer mounted inside the bubble

maker.

5.5 Test range calibration

Prior to lowering the bubble maker and performing backscattering measure-
ments from rising bubble clouds, a test target was deployed in the expected
backscatter pbsition of the test range in order to verify range alignment (recall
Figures 5.1 and 5.4). This calibration was important in order to correctly ac-
count for the transmission loss factors needed to determine the target strength
in Eq. (A.10), and to ground truth the experimental procedure. In order
to determine the total transmission loss factor (T'LF'), the distance between
the source-hydrophone (Rsg), source—target (Rsr), and target-hydrophone
(Rry) need to be known accurately for each receiver.

The test target was a hollow (airfilled) steel sphere of radius a = 1.12m
weighted with 800 Ibs of ballast (lead and steel) and lowered to the backscatter
position at a depth of 87.6m (depth determined using the cable meter). To
determine the distances Rgr and Rry, the time delay between the reception
of an incident main bang pulse and scattered return (specular reflection) from
the steel sphere was measured and compared to the expected values listed in

Column At of Table 5.2. For Hydrophone 1 (H1), the expected time delay

148



Figure 5.8: Photograph of instrumentation setup. Located on the top of the
equipment rack is a digital voltmeter used to monitor the internal over pressure
of the bubble maker. Beneath this, the Deep Thought bubbler controller unit is
mounted in the upper most location of the equipment rack. A signal generator
and the LeCroy 9450 digital oscilloscope are next, followed by a bank of three
WaveTek #753A “brick—wall” filters, and three KronHite #3343 filters set to
low—pass mode. Finally, the Ithaco pre-amplifiers are located at the bottom
of the rack. The computer on the right of the equipment rack was used to
remotely control the recording tape deck and digitize and store the outputs
from the precision electronic mass flow meter and the pressure transducers
mounted in the bubble maker. '
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was Atexpected = 14.3ms and the measured time delay Atpyeas varied roughly
between 13 and 16 ms. The variation is presumably due to slight currents in
the lake which cause either the hydrophones or the target to move slightly
off axis. Because of the agreement between the measured and expected time
delays, it was concluded that the test range was laid out to the best of our
ability. The locations and expected time-delays for the sources and receivers
hydrophones deployed during this experiment are indicated in Table 5.2.
Aside from calibrating the test range, the steel target allowed us to
test our ability to perform a quantitative backscatter T'S measurement using
Eq. (A.10). The PS was configured to send 12ms pulse of sound every 1s
at difference frequency fa = 500Hz and pulse length of 10ms. The incident
main bang and backscattered echo signals were recorded to analog reel-to—reel
tape for each receiver in the backscatter direction using the method described
in Section 5.4. An example of a single incident main bang and scattered echo
pulse recorded from receiver H1 (the nearest hydrophone in the backscatter
direction) is shown in Figure 5.9. The echo arrived at the receiver At = 14.5ms
after the reception of the leading edge of the incident pulse. The preamplifier
gain setting for the incident main bang channel was Gmp = 46 dB; and for the
echo return, the quantity of Gesno = 66 dB gain was added'. The rms voltage
amplitude was measured over an 8 ms “steady-state” portion of the received
main bang Aand scattered echo pulse wave forms (e.g., MBV =0.27 Vs and
EV = 0.09 V,,;s) after the data streams were band-pass filtered at 500 & 50 Hz
(Note: Here the term “steady state” refers to the middle portion of the pulse).

These voltages were entered into the equation for the target strength (Eq.A.10)
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along with a transmission loss factor of —22.38 dB and the pre-amplifier gain
factors in order to determine TS. In this example, for a driving frequency of
500 Hz, the measured TS by receiver H1 is —7.4dB. |
For the PS driven at fo = 5000 Hz, the measured TS was ~12.3dB.
This is in close agreement with the expected TS of a perfectly reflecting
sphere of the same radius at high frequencies, -11.1 dB (recall that TS, =
201og,,(a/2)). The comparison of the theoretical TS of a perfect reflector at
high frequencies to the hollow steel spherical shell is likely valid (Urick, 1967)

and suggests that our ability to measure the TS is good.

5.6 “On-line” data processing

In this section, the preliminary Lake Seneca “on-line” analysis of the tar-
get strength measurements from rising bubble clouds is presented. As shown
in Figure 5.6, a LeCroy 9450 digital oscilloscope was utilized to monitor the
received and pre-processed signals. The primary reason to conduct on-line
monitoring is to ihsure that the experimental measurements and associated
equipment are performing adequately. Another motivation for conducting this
analysis was to obtain a rough estimate of the frequency dependent target
strength and to establish the viability of the parametric source as a research
tool which could be utilized to conduct scattering experiments from bubble
clouds. Thus comparisons between the target strength measurements utiliz-
ing both the parametric source and the conventional sources were made over

a range of frequencies spanning 500 Hz to 7kHz. Below 500 Hz, the conven-
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Figure 5.9: Incident main bang (a) and backscattered (b) waveforms from
the steel target sphere measured at receiver H1. Here, the driving frequency
is 500 Hz and the backscatter return is received at Atpmess = 14.5 ms, relative
to the incident pulse. To enhance the echo, an additional 20dB of gain was

added to (b).
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tional sources were ineffective due to low source level, and thus the signal
to noise ratio and reverberation increased correspondingly. The parametric
source, however, was utilized down to 250 Hz, at which point it too suffered
from a significant drop in signal level. For the frequency range between 500
and 3000Hz, the scattering results using both sources were found to be in
agreement.

Shown in Figure 5.6 is an illustration of the signal processing instru-
mentation used to prepare raw signals received at each hydrophone. While
conducting the experiment, receiver H1 was monitored and processed on-line
in the following manner: |

Once the range was aligned and calibrated and the source frequency and
pulse duration set, the bubble-maker solenoids were activated for 3.4s, result-
ing in a rising bubble cloud. The cloud rose from the bubbler and ascended
through the source beam axis yielding a time-varying backscattered echo level.
Because the rise velocity of the bubble cloud was not measured until the final
day of the experiment, it was assumed that the bubble cloud crossed the axis
of the test 'range when a peak in the scattered voltage amplitude occurred.
This location of the peak varied by as much as 6s depending on the driving
frequency. For the lower frequencies (250 to 600 Hz) the peak occurred at ap-
proximately 6 to 8s after cloud release, and for higher frequencies (> 1000 Hz)
this peak occurred at about 12s after cloud release. The latter is in good
agreement with the expected time needed for a cloud to cross the backscatter
location after cloud generation, while the former is presumably due to several

factors, most notably the decreasing signal to noise ratio as the source driving
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frequency was lowered. This decrease is due to the fact that the signal level
introduced into the test range by the parametric source (or nearly any source,
for that matter) decreased as the frequency was lowered.

Furthermore, at some frequencies, there were multiple peaks. This
would seem to suggest that: (a) angular dependent scattering had occurred,
(b) perhaps interference with the bubble maker was a problem, or (c) the
bubble clouds generated were not rising in a repeatable manner. The latter
conclusion was ruled out after performing the rise time measurements. It was
clear then that our initial assumption (that the cloud crossed the axis of the
test range when the peak scattering level was measured) was in error. It should
be noted, however, that for a given driving frequency the elapsed-rise-time—
dependent scattering amplitudes for several subsequent cloud releases were
well correlated. The pulse length, and thus pulse bandwidth, rather than the
number of cycles was held fixed for the various driving frequencies during the
experimental effort. The reason for this is that at the lower driving frequencies,
we wanted to insonate the target with as much energy as possible. However,
due to the spacing between the first hydrophone (H1) and the bubble cloud,
the maximum pulse length was limited to 14 ms (for longer pulses, an overlap
in the main bang and scaterred signals would occurr).

| For the majority of the scattering data runs the incident pulse duration
was set to 12ms. The pulse repetition rate was set to 2Hz for the Seneca-2
test and 1Hz during the Seneca-3 test. The oscilloscope was set to trigger
on the leading edge of the incident main bang pulse. Range gating of the

echo signal was performed by configuring the oscilloscope to capture and store
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a 10ms window centered on the expected location of the backscatter pulse
waveform. For receiver H1, the 10 ms echo—gate was fixed to acquire data from
15.5 to 25.5ms after the leading edge of the incident main bang waveform.
A sequence of the range-gated echo voltage returns, one for each incideﬁt
pulse propagated across the test range during the ascent of a single bubble
cloud, were stored in the oscilloscope memory. After the cloud had risen for
approximately 45s, sufficient time for it to exit the test range, the sequence
of stored backscatter waveforms were recalled from memory, and displayed on
the oscilloscope monitor.

Finally, for at least one bubble cloud release at each driving frequency,
a hard copy of the LeCroy oscilloscope display screen was made. In Fig-
ure 5.10, an image of the LeCroy console containing the time-elapsed, time-
gated backscatter echo from resulting from a single rising bubble cloud is shown
for a driving frequency of 3.0kHz. As expected, the echo voltage amplitude
varied as the cloud traversed through the source beam, reaching a maximum
10's after release. As the bubble cloud continued to rise, the backscatter echo
voltage amplitude eventually diminished after exiting the test range. Individ-
ual scattering reﬁurns (bins) in the echo time sequence in Figure 5.10 could be
displayed and were used to determine the target strength of the bubble cloud.

A similar sequence of time-gated main bang waveforms were also stored.
The maximum rms voltage amplitude of the echo in a time sequence (EV) and
the average rms amplitude of the main bang sequence (MBV) were recorded in
the experimental log book along with the preamplifier gain settings. Finally,

using Eq. (A.10), the target strength was calculated (also recall Table 5.2).
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Figure 5.10: Time gated echo response from a rising bubble cloud measured
by receiver H1. Here, the PS was driven at 3000 Hz. The time duration of
this oscilloscope trace is 50s. For each incident main bang pulse, a 10 ms win-
dow centered over the expected backscatter signal position (between 15.5 and
25.5ms) after the leading edge of an incident main bang pulse) was digitized
and stored to memory. The pulse repetition frequency was 2 Hz and thus 100
such echoes are displayed in a compressed form (10 echoes per division). The
cloud was released within +1s of the initial trace and the peak echo response
occurs between the 10-15s mark.

In Figure 5.11, the preliminary target strength measurements for fre-
quencies below 1600 Hz are shown. These data sets were conducted utilizing
the conventional source (CS1: 500 to 1250 Hz), and the parametric source (250
to 1600 Hz). The conventional source data was collected during the Seneca~2
test and the target strength increased as the driving frequency was lowered
from 700Hz down to 350 Hz. This increase in the target strength was in-
dicative of a resonance at a lower frequency and these promising results were
the prime motivation for reconditioning the parametric source and performing
the Seneca-3 tests (recall that during the Seneca—2‘experiment the paramet-
ric source was usable only down to 800 Hz). Unfortunately, the conventional

sources could not be driven below 350 Hz due to decreasing signal level. The
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substantial error-bars and lack of agreement with the PS measurements in the
conventional source measurements are due to excess reverberation; clearly at

the higher frequencies this was less of a problem.

Target Strength (dB)
&
»)
]
.
-
»
-
-
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Frequency (kHz)

Figure 5.11: Backscatter target strength measured below 1600 Hz. The hol-
low squares were obtained using the parametric source; the solid squares using
the conventional source. The error bars indicate the extent of deviation in
the backscatter target strength over a consecutive series of three bubble cloud
releases. Note: The curve joining the points is only used to train the eye.

The peak centered at 300 Hz and having TS ~ —1dB is strongly sug-
gestive of a resonance. Recall that the measured TS of the 1.12 m-diameter
steel sphere at 500 Hz was only -7dB. Even though it was not known until
a later date that the dimensions of the bubble cloud were on the same order
of magnitude of the steel sphere, it still seems remarkable that the measured
TS was so large. From Figure 3.2, a rigid sphere of this dimension (ka = 1.1)

would possess a target strength of ~ —13 dB. Incidentally, the measured tar-
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| get strength of the hollow steel sphere for a driving frequency of 500 Hz is
approximately -7 dB—the difference in the measured and predicted value for
the steel sphere is hypothesized to be due to the fact that at 500 Hz, this sphere
does not appear to be impenetrable (at large ka it does), or it is even more
likely that at this low frequency in which the source level decreases dramat-
ically, that the reduced signal-to-noise ratio made an accurate measurement
impossible. |

For the bubble cloud characterization described in Section 4.3 and for
frequencies below 600 Hz, the Lake Seneca bubble cloud is an acoustically com-
pact scatterer, and thus can be treated as a sphere of radius a = 0.376 m with
void fraction 8 = 0.0055. Such a cloud would possess a resonance frequency
of ©, =~ 326 Hz and monopole T'S ~ —3dB at a depth of 87.6 m, according to
Eq.(3.32) and (3.30). Although the preliminary measurement analysis did not
agree quantitively with the model predictions, the presence of the scattering
peak at approximately the predicted frequency (300 Hz) in the Figure 5.11 is

encouraging.

5.7 Post—experimental analysis

5.7.1 Digitizing the data tapes

The data tapes were digitized and processed as illustrated in Figure 5.12. The
tapes were mounted on the ‘tape deck for playback. Recall that prior to record-
ing the signals, the waveforms were pre—conditioned (low-pass filtered one to

two decades above the driving frequency and 100 Hz high—pass filtered). How-
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ever, to insure that no signal aliasing occurred during the digitizing process,
the tape deck output was filtered at one-half the data acquisition rate (de-
pendent on the driving frequency). The filter used was a Stewart Brickwall
Model VBF-8 with 132 dB rolloff per decade. The amplitude of each output
channel _bn the tape deck was calibrated by adjusting the output level of a
pre—tecorded calibration tone to 1V as suggested in the Teac SR31-DF
manual. This two-second calibration tone was automatically recorded prior
to each data run during the experiment. Also, a sequence of calibration tones

were recorded to the tape deck each morning during the experimental effort.

O O

Reel-to-Reel Tape Deck

Apple
1 \ I 1 Quadra
' 840av

Anti-Aljasing Filter

Figure 5.12: The data tapes were mounted on the reel-to-reel tape deck and
digitized. Prior to digitizing, an anti-aliasing filter set to one-half the data
acquisition rate was placed between the tape deck output and the digitizer
input. The computer (Apple Macintosh Quadra 840av) was outfitted with a
National Instruments NB-MIO-16 multifunction I/O board and performed the
waveform digitizing. The digitized waveforms were stored to files on magneto-
optical disks for future processing.

For the majority of the recorded data, the National Instruments NB-
MIO-16 expansion board (maximum digitizing rate, 100kHz) in the Apple
Macintosh Quadra 840av computer was configured to digitize data at a rate

of at least 10 points per cycle, however, the sampling rate often exceeded 20
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points per cycle. For frequencies below 1000 Hz, the sampling rate was set to
20kHz, and four channels of the tape deck output were digitized simultane-
ously.

Shown in Figure 5.13 is a pair of digitized main bang and echo wave
forms recorded from receiver H1 for a source driving frequency of 1400 Hz
during the Seneca-3 experiment. The Waveform in Figure 5.13(a)was pre-
amplified at Gy, = 20dB, and in Figure 5.13(b) the gain was set t0 Gecno =
43 dB, in order to maximize the respective main bang and scattered echo signal
in a £1 Vpeax range (the input range of the recording tape deck).

The software used to control the digitizing process, National Instru-
ments LabView 3.0, was configured to capture 150ms of data after pre-
triggering 10 ms prior to an incident main bang pulse. Recall that for receiver
H1, the backscattered echo was expected to arrive approximately 14.3+2.0 ms
after the leading edge of the main bang pulse. For frequencies below 1kHz, the
main bang from receiver H1 was used as the trigger channel. Once the voltage
output of this channel exceeded the specified amplitude, all four channels were
simultaneously digitized. For the higher frequencies, different output channels
were used to trigger the digitizing process. The computer software controlling
the digitizing précess was initiated manually (i.e., a simple “mouse click”) at
the point of cloud release by monitoring the playback of a single tape deck
output channel on an external speaker (the activation of the solenoid bank
resulting in the release of a cloud from the bubble maker was audible).

The digitizing process continued until at least 30s had passed and wés

stopped prior to the 60s mark, or when the next cloud was released from
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the bubble maker. The bubble cloud rise velocity was 0.39 m/s, thus in 30s
a bubble cloud should rise approximately 11 m above the bubble maker. For
the Seneca-2 data tapes, at least 60 waveforms per data run were digitized
(i.e., the pulse repetition rate was 2 Hz); and for the Seneca—3 data tapes, at
least 30 waveforms were acquired.for each data run. The digitized signals were
stored to files on magneto-optical disks for future analysis. This process was
repeated for each driving frequency, and each cloud release recorded to the
reel-to-reel tapes.

Shown in Figure 5.14 is the echo voltage response measured by receiver
H1 for a single rising bubble cloud at a source driving frequency of 1400 Hz
during the Seneca—3 experiment. Consecutive waveforms (bins) are sepafated
by 1s, and are to be read down first, then across. The lengfh of each time
trace in Figure 5.14 is approximately 50 ms. The bubble cloud was generated
within £0.5s of the upper left waveform. The scattering response increased
as the bubble cloud traversed through the axis of the source beam, reaching
a maximum in bins 11-14. This time—frame is within the 3.8 m (backscatter
position) rise-time measurements discussed in Section 4.3.1. The clipped pulse
early in each bin is the incident main bang waveform. The reason for the
clipping is due to the enhanced pre-amplifier gain applied to the received signal
in order to maximize the echo pulse in a &1 Ve, range prior to recording. A
separate channel with the pre-amplifier gain set to maximize the main bang
pulse in this voltage range was also recorded. Typically, the difference in gain

settings between the main bang and echo channels exceeded 20 dB.
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Figure 5.13: Sample incident and scattered pulse ~ 11s after cloud release
(backscatter position) for a driving frequency of 1400 Hz and measured at HI1.
To increase the resolution of the scattered echo, the signal was pre-amplified
43 dB prior to recording. The main bang signal was pre—amplified separately
by 20dB. The incident pulse length is 12ms. The darker region in each plot
corresponds to an 8 ms window over which the rms measurements were made.
In this case, the rms voltages are MBV = 0.6 Virs, EV = 0.46 Vims. Thus for
a total transmission loss factor of TLF = —22.38 dB (recall Table 5.2) and the
preamplifier gain settings listed above, the measured target strength as given
by Eq. (A.10) is TS = -2.9dB.
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Figure 5.14: Echo response (voltage versus time) after a cloud release at a
driving frequency of 1400 Hz. Consecutive time traces are separated by 1s and
are to be read down first then across. Each trace is 50 ms in duration. The
cloud is released within 0.5 s the upper left signal. As the cloud rises through
the target area, significant scattering is observed with the expected backscatter
position in the upper four traces in the middle column. The darker region
(8 ms) contains the maximum rms voltage in the “steady-state” portion of the
echo and is used for the TS measurements. The larger amplitude ‘clipped’
incident main bang ping is due to optimal amplification of the echo.

5.7.2 Data analysis

Because of the relatively low Q (wide bandwidth) of the incident pulses at the

lower frequencies, the archived data files were processed using two methods.
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The “steady-state” rms amplitude of the main bang and scattered waveforms
were used to determine the target strength at each driving frequency using an
algorithm similar to the on-line analysis. This method, however, only results
in a single backscatter data point for each driving frequency, which is effectively
the “average” value over the pulse bandwidth. For example, consider the target
strength versus frequency curves shown in Figure 3.5, in particular consider
the dashed curve with the sharp resonance peak at approximately 600 Hz.
To resolve this high-Q resonance peak using amplitude measurements from
broad-band (low—Q) pulse is impossible. Rather, this method would result in
an “average”’ response, which tends to lower resonance peaks and increase the
dips.

However, utilizing Féurier analysis techniques, the broad-band pulses
can be used to determine the frequency response of the scatterer. Further-
more, when the bandwidth of the incident pulses at several different driving
frequencies overlap (as is the case in this experiment), a much higher resolution

frequency response curve can be obtained.

Steady—state rms analysis

In performing the preliminary experimental analysis, the rise velocity of the
bubble cloud was unknown and the peak rms amplitude of the main bang
and scattered echo voltage provided by hydrophone H1 was used to determine
the backscatter target strength of the bubble cloud. During the experiment,
it was expected that the strongest scattering returns from the bubble cloud

would arrive when the bubble cloud crossed the axis of the test range. The
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expectation was that the scattering level would be lower prior to and after the

cloud passed through the backscatter location. This was not observed for all
driving frequencies. Rather, for some source driving frequencies, the ampli-
tude of the scattered return was observed to increase many seconds prior to
the time needed for the cloud to cross the axis of the source beam (12s), de-
crease for a few seconds, and then increase again. These unusual observations
were repeatable for each of the several clouds released during a given frequency
run. Thus, it was clear that some unexpected phenomenon was effecting the
scattering observations. At the time, it was postulated that either angular de-
pendent scattering (i.e., not normal incidence backscatter) or perhaps acoustic
interference with the bubble maker had occurred.

Another limitation in the preliminary analysis was that the transmission
loss factor used to determine the TS level was fixed. This was due to the fact
that only a single measurement, the backscatter target strength, was being
performed. In this analysis, the rise-time dependent transmission loss factors
from Figure 5.5 will be used to determine the elapsed time target strength.

Recall Figure 5.14 in which the evolution of the backscattered echo
response of a single rising bubble cloud is displayed. The echo location in
each waveform varies as a function of elapsed rise-time, and thus constant
range—gating of the scattered echo cannot be used as it was during the “on-
line” analysis. Moreover, even though consecutive scattering runs at a given
driving frequency were highly repeatable, deviations in the echo delay of 1 to
2 ms were not unusual between cloud releases. These deviations are thought

to be due to lake currents which result in the horizontal displacement of the
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bubble cloud and/or the receivers.

The peak rms steady-state amplitude of the backscattered echo signal
was measured for each incident pulse (see the darker region) in order to deter-
mine the target strength as a function of rise time. A simple algorithm was
designed to locate the echo pulse in these waveforms. First, the rms amplitude
over an 8 ms window beginning 35 ms after the trigger on the main bang pulse
(t = 0s) was calculated. Second, this measurement was compared with the
rms amplitude over a window of the same width beginning 0.5 ms prior to the
35mys delay. The second step of this procedure was repeated until the echo
measurement window reached the tail of the incident main bang pulse, and
then the peak rms echo amplitude was determined. This peak echo voltage
amplitude, along with the average rms amplitude of the incident main bang
pulse waveforms, the pre-amplifier gain factors, and the total transmission
loss factors from Figure 5.5 were used to determine the target strength as a
function of rise time using Eq; (A.10). |

Shown in Figure 5.15 are the bubble cloud rise-time dependent target
strength measurements for a consecutive sequence of three bubble cloud re-
leases. For this data run, the source driving frequency was set to 1400 Hz,
and the measurements were performed using receiver H1, the closest to the
target. The average target strength for these three runs is indicated by the
dashed line. It is clear that there is a significant deviation in the measured
TS in the first few seconds after cloud release, and again after 20s. This vari-
ability is likely due to the fact that the bubble cloud was not within the -3 dB

beam-width of the parametric source. The variation is thereby casued by the
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variability associated with the low signal to noise ratio conditions. However,
in bins 5-15, the measured TS for the three clouds is highly repeatable since
the bubble cloud is definitely crossing through the main lobe of the paramet-
ric source, resulting in an improved signal to noise ratio. In Appendix E, the
remainder of the rise-time dependent target strength measurement sequences

are illustrated.
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Figure 5.15: Time elapsed target strength for a driving frequency of 1400 Hz
during the Seneca—3 experiment. The crosses, stars, and plus signs are the
elapsed time dependent TS measurements for individual cloud releases. The
boxed points and the dashed line joining these points indicate the average
elapsed time TS. The minimum measurable signal in the absence of a rising
bubble cloud was -26 dB.

In Figure 5.16 the elapsed time target strength averaged over three con-
secutive cloud releases is shown for each of the source frequencies used during

the Seneca—3 experiment. This figure illustrates some important points. In the

frequency range 250 to 500 Hz, the target strength of the rising bubble cloud

is relatively strong during the first 20s after cloud release. This is in part due
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Figure 5.16: Summary rise-time dependent TS measurements. Here, the
target strength is computed from the average echo voltage return from a se-
quence of three rising bubble clouds. The individual data runs are plotted in
Appendix E.

to the lower signal to noise level at these frequencies compared to the higher
frequency data sets. The PS is less efficient at the lower difference frequencies,
and thus our ability to measure the scattered echo over the background spec-
trum was reduced. It is clear, however, that a peak in the TS versus frequency
curve exists between 300 and 350 Hz at approximately 7s after cloud release,

at least 3s earlier than expected.

The reason for the earlier than anticipated echo return could be due to
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the long sonic wavelengths and the proximity of the bubble cloud to the bubble
maker (interference phenomenon). It is plausible that the two are acoustically
coupled, resulting in an enhanced echo return. The higher frequency data
(> 1000 Hz), on the other hand, clearly demonstrates that the bubble cloud
crossed the axis of the test range between 9 and 17s after cloud release. This
is in good agreement with the measured rise-time data which suggest that the
head of the cloud ascended to the backscatter target lovcation in approximately
9s and the lower boundary of the cloud passed through this position nearly
14 s after being released into the lake.

According to the rise-time measurements, the bubble cloud should cross
the axis of the test range between 9 and 14 seconds after generiation. Thus, to
determine the backscatter TS, the rms voltage in bins 10-13 vwere smoothed
and averaged over each of the three cloud releases, resulting in the target
strength versus frequency curve given in Figure 5.17. The uncertainty in the
backscatter TS measurement is derived from the maximum and minimum de-
viation with respect to the averaged value and are not determined statistically
(due to the limited number of observations).

Figure 5.17 plots the smoothed-averaged backscatter target strength
measurements at each source driving frequency below 1600 Hz along with the
prediction from the simple model presented in Chapter 3. The solid line is a
calculation of the target strength using the asymptotic expression (Eq. 3.30),
and the dashed line a calculation using the full wave solution of Eq.(3.14). The
non—acoustically determined parameters, P, = 9.82 x 10°Pa, ¢ = 1421.5mys,

B = 0.0055, and a = 0.376 m, are used respectively for the ambient hydro-
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Figure 5.17: Backscatter TS measurements (rms voltage method) performed
during the Lake Seneca experiment and comparison with the model. The
curves are calculations based on the non—acoustically determined parameters
obtained in Chapter 4.3.

static pressure, the sound speed of the water surrounding the sphere, the void
fraction, and the radius of the spherical bubble cloud. The error-bars at each
source driving frequency indicate the maximum and minimum measured tar-
get strength for a sequence of three bubble cloud releases as they crossed the
axis of the test range (bins 10-13).

The acoustic scattering measurements agree quantitatively with the pre-
diction of the simple model near the monopole resonance peak (=~ 300 Hz) as
shown in Figure 5.17; this agreement of the experimental measurement with
the monopole model is indicated in Table 5.4. Furthermore, in Figure 5.17
there is semi—qualitative agreenient out to frequencies as high as 800 Hz. How-

ever, the measurements and model diverge at the higher frequencies. This dis-

agreement is likely due to shape dependencies and non—uniform bubble density
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Eq. (6.4) (m = 0) Eq. (6.5) Measured
Q, 326 £ 25 Hz 294 £ 25Hz 325+ 25Hz
TSy —-29+07dB | -30+0.7dB | —-3.4+£0.9dB*

%The measured value of TSy was obtained at 300 Hz, and not at Q,

Table 5.4: Monopole resonance frequency and target strength for the Lake
Seneca bubble cloud.

within the Lake Seneca bubble cloud. For the model, the shape of the bubble
cloud is taken to be spherical and the bubble population is uniform through-
out; at frequencies above 600 to 700 Hz, this cloud is not a uniform sphere. It
is likely that if the shape of the bubble cloud were more nearly spherical and
that if the bubble population were uniform, then better agreement at all fre-
quencies would have been obtained. Furthermore, the data was obtained over
a sparse set of driving frequencies and fhus one cannot expect to resolve the
sharper peaks and valleys in the higher frequency spectrum without resorting
to a frequency spectrum analysis (to be addressed in presentation).

However, for frequencies below 600 Hz the cloud is acoustically com-
pact (ka < 1) and the trends observed in the Lake Seneca measurements agree
semi—qualitatively with those of the partial wave expansion model. The lowest
driving frequency was 250 Hz, and a sharp decrease in the target strength pre-
dicted by the model (i.e., the Rayleigh scattering regime) below the monopole
resonance frequency Wa.é not observed. This, in part, is due to the decrease in
source level with frequency. The decreasing source level results in é lowered
signal to noise ratio, as is evident by the nearly flat elapsed-time response
(Figure 5.16) at all frequencies below 550 Hz, with the exception of those fre-

quencies near resonance. Still another possibility for the sooner than expected
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scattering return near the monopole resonance is that the receiver was not in
the far field at these low frequencies. The distance between the target and
receiver at the backscatter location was 20.4m, and the wavelength is greater

than 2.5m.
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Chapter 6

Acoustic backscattering from
compact bubble clouds beneath

the ocean surface

6.1 Introduction

Recent studies indicate that bubble layers, plumes, and clouds are produced
when waves break (wind speed, U > 6mys), and that these assemblages are
convected to depth by Langmuir circulation (Thorpe, 1982; Monahan & Nio-
caill, 1986). A fundamental question to be answered is what role, if any,
do bubble assemblages play in the near-surface production and scattering of
sound in the low to mid—-frequency range (20 Hz to 2kHz). There exists am-
ple experimental evidence to suggest that mid—frequency ambient noise levels

dramatically increase when waves begin to break (Carey & Browning, 1988;
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Hollet, 1994) and that sound scattering from the sea surface possesses a charac-

teristic which is different from that expected by Bragg scattering from gravity
waves (McDaniel, 1988). The commonly held view is that persistent bubble
clouds, plumes or layers brought on by breaking wave activity can act as effi-
cient scatterers of sound. Indeed, recently published works by Henyey (1991),
McDonald (1991), Gragg and Wurmser (1993), Carey and Roy (1993), Gilbert
(1993), Sarkar and Prosperetti (1993) indicate a significant role for bubble
assemblages in surface backscatter.

In response to these observations a hypothesis has been stated that if
bubble clouds and plumes with void fractions, 3, ranging from 1075 to 102 are
entrained by surface wave activity, then low—frequency radiated noise can be
produced and scattering can occur with little Doppler shift and ample Doppler
spread. It has been argued by Prosperetti (1988b) and by Carey and Browning
(1988) that, at low frequencies, it is not the individual bubbles driven at
their natural resonance frequencies that contribute the most to the scattering
cross section of a bubble plume. Rather, sound is scattered primarily by the
bubble plume itself via a process in which the bubbles pulsate together in a
collective mode of oscillation. This hypothesis is based on the classical theory
that when a large number of small bﬁbbles occupy an acoustically compact
region, coupled oscillations result and the propagation of sound is determined
by the‘ properties of the mixture; the free gas establishes compressibility and
the water provides inertia. In such a case, a damped resonant oscillation can
result in which the eigenfrequency is determined by the phase speed within the

“effective” medium (typically less than 500 m/s) and the characteristic length
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scale of the plume. Ample evidence of this phenomena, which was originally
proposed by d’Agostino and Brennen (1983) has been obtained from the study
of low—frequency noise produced by steady—state bubble columns (Yoon et al.,
1991) as well as transient bubble plumes (Kolaini et al., 1993; Carey et al.,

1993).

6.1.»1 Prominent, near—surface scattering features

Recent tests of low—frequency active sonar systems (CST—4)! indicate the pres-
ence of prominent, near—surface targets during conditions of high sea state
(Gauss et al., 1993). Those investigators concluded that prominent returns
in the 800-1200 Hz range were due to bubble clouds with lifetimes less than
45 seconds. Similar results were obtained at CST-7 by Adair et al. (1992),
who observed strong returns (target strength > —5dB) from seemingly short
lived targets positioned within a few meters of the surface. Henyey (1991)
and McDonald (1991) have developed scattering models based on the appli-
cation of weak scattering theory to so—called tenuous bubble clouds (8 order
10~8). However, tenuous clouds should persist for more than 45 seconds and
are probably not the source of these bright targets.

It is more likely that these short-lived, near—surface targets are the
result of bubble plumes generated beneath plunging breakers. Such plumes
possess length scales of up to 1m, void fractions on the order of 1073, and
lifetimes on the order of seconds (Monahan, 1988). If the plumes detach, a

three—dimensional, high void fraction bubble cloud is momentarily submerged

10ST = Critical Sea Test, a research program sponsored by the Office of Naval Research.
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at a depth of order 1 meter or possibly more. The contention here is that such
a cloud could exhibit resonance scattering properties that translate to high
target strengths at low frequencies for short periods of time.

Since the burden of proof lies with the experimentalist, a lake test was
carried out in the fall of 1991. (See Chapters 4 and 5 for a detailed descrip-
tion of this effort.) The rational behind the experiment was to measure the
frequency—dependent backscatter target strength (TSg) of a submerged bubble
cloud of known properties in the free field under known propagation conditions.
The test, which was performed at the NUWC? Seneca Lake Sonar Test Facility,
involved the production of a bubble cloud of known geometry and void frac-
tion 90 m beneath the surface of the lake. Using a parametric sound source,
the target strength of the cloud was measured for frequencies ranging from
250 Hz to over 10 kHz. The test results indicated the presence of a prominent
scattering resonance whose level (TS =~ —3dB) and frequency (£, =~ 325 Hz)
are well predicted using classical scattering theory coupled with an effective
medium approximation and subject to a priori knowledge of the bubble cloud
properties. This theory, which is reviewed below, assumes monopole scatter-
ing and free—field conditions. The generalization of this model to near-surface

conditions is the topic of this chapter.

2Naval Undersea Warfare Center
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6.2 Theoretical model

6.2.1 Scattering from bubble clouds in the free field

Here, the usual assumptions are taken in which plane waves are incident on a
compliant sphere of radius a surrounded by a continuous medium of density p
and sound speed c respectively. Likewise, the sphere is considered to be a ho-
mogeneous medium of density p, and sound speed c, respectively. The sphere
(bubble cloud) is composed of many air-filled bubbles; thus, the medium is
dispersive with an effective density and wave number given by (Commander

& Prosperetti, 1989),

p. = (L=Bp+PBps (6.1)
w? 4rnRw*

K2 = — 2 .

¢ c? + w2 — w? + 2ibw’ (62)

where k, is the wave number in the liquid, R, is the radius of individual
bubbles (considered to monodispersed in size), 7 is the number of bubbles per
unit volume, w, is the angular resonance frequency of the bubbles, 0 is the
void fraction, and b is the complex frequency dependent damping constant.
For w < w,, one can show that the real portion of the complex phase speed

in the mixture is given by,

Ce = 1/ 7Poo/ﬂp (63)

Here, P, is the ambient pressure and < is the ratio of specific heats of the air.

Note that ¢, decreases with increasing void fraction. Indeed, for 3 greater than
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approximately 1072, the effective sound speed of the mixture is less than that
encountered in either air or water alone.

For the scattering problem in an infinite medium the Helmholtz equa-
tion is solved subject to the boundary conditions of continuous pressure and
normal velocity. The far—field solution is a superposition of incident plane
waves and scattered spherical waves, the latter of which are represented by an

expansion in Legendre polynomials given by

il i‘(zm + 1) R Py (c086). (6.4)

m=0

e
kr

ps(r) — z%

‘The coefficients R,, in Eq. (6.4) satisfy the boundary conditions and
describe the reflectivity of the sphere. For acoustically compact scatterers,
where ka < 1, the monopole term in the expansion dominates and the far—

field backscattered pressure amplitude is approximated by

(ka)? 1— gh?

|ps| = po (6.5)
where g = p/p., and h = ¢/c,.

The second term in the denominator accounts for radiation damping
while the first term, when set equal to zero, defines a resonance condition. This
results in a monopole resonance frequency and scattered pressure amplitude

given by

1 3vP,
P = o B —B)p (6:6)
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Note that the expression for €, has the same form as the Minneart ex-
pression (Eq. 2.21) defining the monopole resonance frequency of a spherical
bubble; here 8 accounts for the velocity defect associated with the two—phase
mixture. To obtain the free—field backscattered target strength one can sub-

stitute either Eq. (6.4) or, for low—frequency scattering, Eq. (6.5) into

Ps

[}

r=1lm

In Table 5.4 the predicted and resonance TSy are compared with the
measurements obtained at Lake Seneca. Since the concern here is with the
monopole resonance response, only the m = 0 term was calculated in the
expansion. The good agreement between theory and measurement supports
the view that an effective media approximation is a reasonable way to model
low—frequency bubble cloud scattering; indeed, it appears that one can predict
the resonance using the simple algebraic expressions given in Eq. (6.5). It is
important to note that the model and the measurements agree despite the fact
that the Seneca cloud was spheroidal rather than spherical. This is because
a monopole response corresponds to a volume-dependent, breathing mode
oscillation. For an acoustically compact scatterer, the monopole resonance
behavior is well approximated by a sphere of equal volume. In the case of the

Lake Seneca cloud, this corresponds to a sphere &~ 0.38 m in radius.
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6.2.2 Scattering from bubble clouds near the ocean

surface

At low frequencies we chose to model the acoustically compact target as a
monopole scatterer positioned a distance d beneath a plane horizontal surface
characterized by a reflectivity coefficient p which can vary between -1 and 0.
The primary assumptions here are incident plane waves and far-field propa-
gation. A standard application of the method of images yields the following

expression for the near—surface, backscatter target strength:
TS = TSy + 101og |1 + 42 + 2u — 4psin® (kdsing, )|, (6.8)

where ¢, is the grazing angle measured relative to the horizontal. The reflec-
tion coefficient describes the roughness of the sea surface; y = —1 corresponds
to a smooth pressure release surface and p = 0 corresponds to an extremely

rough surface (effectively equivalent to an unbounded medium).

6.2.3 The method of images

The solution in Eq. (6.8) is derived using the method of images. Consider
the scattering geometry of Figure 6.1. Here, acoustic waves of frequency w
and pressure amplitude p; are incident on the sea surface at grazing angle ¢,.
The incident waves are generated by the source S which is located at point
S = (—z,—y,—z). The surface can be smooth and pressure release, in which
case the amplitude reflection coefficient is 4 = —1, or it can be roughened by

wave action, effectively lowering the magnitude of the reflection coefficient as
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Figure 6.1: Near surface scattering geometry. It is important to note that
for backscattering 6; = 6, = ¢,.
alluded to above (this will be discussed more formally in Section 6.2.4).

The 2-D scattering geometry is given in Fig. 6.1, where the z—azis is the
vertical direction, and the z — azis denotes the horizontal range. We assume a
plane wave incident on a monopele point scatterer a distance d beneath a sur-
face of reflectivity p. For far-field measurements, a monopole scatterer (kd < 1)
near a reflecting surface behaves like an acoustic dipole (applying the method '

of images), thus:

an(r) = p [1 +ue—i2kdsin¢g} ei(kxcos¢g+kdsin¢>g)’ (69)
Pscatt(r) = p, [1 + ue+i2kdsin¢g] e—i(kmcos¢g+kdsin¢g), (610)
P .
—-]-;—aﬁ = F|1+ p® + 2ucos (2kdsin ®,)|- (6.11)
1
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Here, Pj,. and Py refer to the total incident/scattered fields (actual plus

image), and p; and p, are the magnitudes of the incident/scattered signal
in the absence of a reflecting surface. The ratio ps/p; on the right side of
Eq. (6.11) is the backscatter form function, as derived previously, and should
be replaced with Eq. (3.14), or its asymptotic form, Eq. (3.30). However, the

data will be presented as 'T'S, so that:
TS, = TSg + 10log |1 + 4 + 2u — dpsin? (kdsing,)|”, (6.12)

where the second term on the right is generally referred to as the transmission
anomaly (TA)(Urick, 1967; Kinsler et al., 1982). It is easy to show that for
1 =~ —1, and for clouds that are acoustically close to the surface (kd < 1), that
the argument of the TA can be simplified to ((kd)*sin* qi)g), which suggests a
dipole interference pattern. Thus, high void fraction clouds, which exist only
very near the sea surface and have significant low-frequency TS’s in the free-
field, may not be acoustically “important” due to the effect of surface dipole
cancellation. On the other hand, for deeper scatterers, the volume fractions
are necessarily lower (by design of nature) and may not resonate at all. It
seems plausible that an optimum combination of depth, void fractions and

cloud sizes may exist; a notion that we are currently exploring.
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6.2.4 The Kirchoff approximation

The Kirchoff approximation given by (Urick, 1967; Thorsos, 1990) relates the

reflection coefficient to the windspeed, U, as follows:

b= _e—Z(khSind)g)z, ' (6.13)
where,
a U4
h? = 4;292 (6.14)

is the rms—squared wave height predicted by the “Pierson-Moskowitz” wave-
height frequency spectra(Pierson & Moskowitz, 1964). Here, U is the wind
speed measured 10 m above the sea surface, o's are empirical constants, and
g = 9.8 mys®. The range of the reflection coefficient is =1 < p < 0. p= -1
corresponds to a smooth pre‘ssure release surface (i.e., low frequencies and/or
low wind speeds). Similarly, at high frequencies or high wind speeds the surface
appears acoustically rough, which disrupts coherent surface reflection yielding
free—field acoustic behavior (i.e., p — 0 ).

It is evident from Eq.(6.5), (6.8), and (6.13) that the resonance backscat-
ter target strength for a near—surface bubble cloud is a complex function of
the various parameters. From Eq. (6.5) it is clear that increasing either a or
8 reduces €, and increases the TSg. However, the proximity of the surface
is parameterized by kd, i.e., depth is relative to the acoustic wavelength. For

kd < 1 and p = —1, the scattered pressure scales with (d/ A)%. From this it
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is clear that, although large, high—3 clouds possess significant cross sections
at resonance, they are also subject to substantial dipole interference owing to
their close proximity (both oceanographically and acoustically) to the surface.
It would appear that there are optimum combinations of physical and envi-
ronmental parameters leading to significant target strengths (say, larger than

-10dB).

6.3 Results and discussion

At this point a “case study” is considered, in which the scattering character-
istics of a 5cm radius cloud of very small bubbles is explored. The grazing
angle is fixed at 10°. Within the bounds of this simple model, the remaining
parameters influencing the scattering characteristics of this cloud are the void
fraction, depth, and windspeed. Both free—field and near-surface scattering
will be considered. All calculations employ only the m = 0 term from Eq.(6.4),
thus only the low—frequency (i.e., monopole) backscattering behavior will be
considered. |

Shown in Figure 6.2(a) is the target strength versus frequency for this
cloud resident at a depth of 2m and possessing a void fraction of 8 = 5 x
1073. Note the monopole resonance peak at 786 Hz, where TSg is -9.5dB.
A windspeed of 20mys does little to modify the response, for the surface is
very rough. It is interesting to note, however, that lowering the windspeed to
7m/s increases the target strength to +1.95dB. This is due to “constructive”

interference between the real and image scatterers. To see this more clearly,
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consider the plot of resonance versus depth show in Figure 6.2(b). The “Lloyds

Mirror” interference pattern is clearly the cause of the elevated target strength.
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Figure 6.2: Low—frequency backscatter from 5cm radius cloud for § = 5 X
1073 and ¢, = 10° : (a) depth = 2.0m; (b) frequency = 786 Hz.

The globai scattering properties of this cloud are illustrated in the sur-
face plots of Figure 6.3. Figure 6.3(a) is a plot of the TS at resonance versus
depth and void fraction. As predicted in Eq. (6.5), increasing the void frac-
tion results in a significant increase in TS and decrease in §),. There is also a
weak dependence on submerged depth, as evidence in Eq. (6.3). Figures 6.3(b)
through (d) depict the influence of the surface. The surface-dipole interfer-
ence pattern is most evident at 7my/s, where over the entire frequency range.
Target strengths as high as +10dB are observed for clouds with void fraction
B =5 x 1072 positioned at depths ranging from 7-8 m. However, such clouds
are not likely to exist in the open ocean.

A sequential consideration of Figs. 6.3(b) through (d) serves to illustrate
the effect of increasing windspeed. As the wind speed increases, the surface
become rougher and therefore less influential. Indeed, it appears that at 20 m/s

free—field conditions prevail for all but the lowest resonance frequencies (i.e.,
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highest void fractions). The notion of an optimal combination of void fraction
and depth is clearly evident in these plots, which exhibit pronounced peaks

and valleys as these parameters vary.
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Figure 6.4: Low-frequency backscatter from various clouds for 8 =5 X 1073
and ¢, = 10°: (a) freefield calculations; (b) depth = 2.0m and U = 7mys.
Now the role played by increasing the size of the bubble cloud is consid-
ered. Figure 6.4(&) shows a plot of TSg versus frequency for clouds with radii
ranging from 5 to 50 cm. All four clouds possess a void fraction of 5 = 5x 1073,
As expected, increasing cloud size equates to decreasing resonance frequency
and increasing target strength in the free field. Conversely, Figure 6.4(b) il-
lustrates the backscatter TSps for the same clouds at a depth of 2m and a
surface grazing angle of 10°. Now, the smaller clouds exhibit the higher target
strengths at resonance. In general, this is due to the fact that these smaller
clouds resonate at higher frequency, which means that the surface is further
removed (acoustically speaking) and therefore less influential. However, in this
particular instance, the contribution of constructive interference between the
real and image scatterers plays a role as well. Regardless, one should not be
too quick to aséribe free—field scattering properties to bubble clouds resident

near the surface. In some instances, it may be the smallest clouds that make
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to largest contributions.

6.4 Summary and conclusions

In this study, a simple model describing the low—frequency scattering proper-
ties of high void fraction bubble clouds in both the free field and near the
ocean surface was developed. This model, which is based on an effective
medium approximation and acoustically compact scatters, successfully pre-
dicts the results of the bubble cloud scattering experiment carried out at Lake
Seneca (Roy et al., 1992). The introduction of the surface is facilitated by
the method of images and is subject to the same constraint of low—acoustic
frequency imposed by the compact scatterer assumption. This model is not
intended to serve as a exact replicate of oceanic bubble cloud scattering. Such
an endeavor offers limited utility, for the accuracy of any model is ultimately
bounded by the quality of the input data. The model herein was kept simple
by design, for only then can the complex physical behavior be expressed in
a simple analytical form. Simple, analytic theories facilitate the exploration
of parameter space, and more importantly serve to illuminate the underlying
physics.

The bubble cloud appears to resonate somewhat like a free bubble
(Eq. 6.5). Increasing the size of the cloud decreases the resonance frequency
and increases the free—field target strength at resonance. Increasing the void
fraction has the same effect due to the reduction in sound speed within the

cloud. For example, a 0.5m radius cloud (8 = 5 x 1073 ) resonates at 75 Hz
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and possesses a free field target Strength of +10dB at resonance, whereas a
0.1 m radius cloud with the same void fraction resonates at 370 Hz and has a
target strength of —3.5dB.

Introduction of the surface leads to a dipole interaction. For a perfectly
smooth surface, the target strength can either increase or decrease depend-
ing on the frequency and the depth. Since the resonance frequency is also a
function of cloud size and void fraction, the manifold of possible behavior is
quite broad. In general, larger clouds are more effected due to the fact that
they resonate at lower frequencies; the proximity of the surface is defined rel-
ative to the acoustic wavelength. Incoherent scattering brought on by surface
roughness reduces the impact of dipole interaction. As the wind picks up, or
as the acoustic frequency increases, the environment asymptotes to that of a
free field. It is interesting to note that the same environmental conditions that
lead to a diminishment of surface dipole interaction also result in high void
fraction bubble clouds entrained by breaking waves.

A case study of a 5 cm radius cloud revealed target strengths as high as
+10dB at depths exceeding 7m and for a windspeed of 7mys. For the case of
a void fraction cloud at a depth of 2m, the calculated resonance frequency and
target strength was 786 Hz and 0dB respectively. It is important to recognize
that the notion of such a cloud temporarily residing at a depth of 2 meters
beneath a breaking wave event is well within the bounds of reason. A 0dB
target strength is quite significant, and we conclude that these small, high
void fraction clouds may indeed be the source of the short-lived, near—surface

scattering features observed by investigators such as Gauss et al. (1993) and
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Adair et al. (1992).
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Chapter 7

Concluding remarks

The presence of bubbles in water dramatically effects the propagation of sound
waves. When a bubble is formed (or “birthed”), it radiates a characteristic
démped harmonic acoustic signature at the well known Minneart (monopole)
resonance frequency given by fo = (1/27R,) \/m In addition to radi-
ating sound, a bubble is an excellent absorber and scatterer of sound as well.
In sufficient concentrations, a mixture bubbles in water effectively lowers or
raises the sound velocity depending on the acoustic frequency and the sizes of
the bubbles. |

Substantial laboratory and field evidence suggests that high-void frac-
tion bubble clouds radiate a sound when produced. The acoustic signature,
however, is not limited to the relatively high bubble resonance frequencies.
Recently, Hollet (1994) and Farmer and Vagle (1989) observed a significant
contribution of low—frequency sound (< 1kHz) coincident with the produc-

tion of a bubble cloud in the ocean. In addition, many laboratory and well
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controlled field experimental efforts have established that bubble cloud pro-
duction is a viable source of low frequency sound in the ocean (Roy et al.,
1992; Carey et al., 1993; Kolaini et al., 1994; Yoon et al., 1991; Nicholas et al.,
to be submitted) and is in good agreement with the simple theoretical models
(Carey & Fitzgerald, 1993; Lu et al., 1990).

Interestingly enough, prior to 1985 fhere was little or no mention of
the possibility that bubble clouds contributed to ambient noise in the ocean
below 2kHz. Currently, this idea is widely accepted. The recent field mea-
surements of Hbllet and of Farmer and Vagle, when considered along with the
good agreement between the theory and results of Carey’s tipping-trough and
Kolaini’s bucket—drop experiments suggest that the bubble clouds generated
beneath breaking waves are a fundamental contributing source of natural low
frequency noise in the ocean.

Since a good radiator of sound is a good scatterer of sound, it seems
plausible that acoustically compact bubbly regions (clouds) can behave as
scatters of sound. The application of a classical theory coupled with the ho-
mogeneous mixture assumption based on the low frequency air-water mixture
properties produces anhanalogous single-bubble description of the bubble cloud
in which the resonance frequency of the volume mode is described by a mod-
ified Minneart formula (Eq. 3.32) and a simplified monopole expression exists
for the backscatter target strength (Eq.3.33). Bubble clouds produced near
the sea surface are important in both the production and scattering of low

frequency sound.
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7.1 Collective bubble oscillations

The propagation of acoustic waves in fluids is highly influenced by properties
such as absorption and scattering. In fact, for a two-phase fluid consisting of
water mixed with a sufficiently large concentration of air bubbles, the sound
velocity is frequency dependent. This dependence is a consequence of the
marked change of the fluid’s natural compressibility when mixed with bubbles
(Brekhovskikh & Lysanov, 1991). For frequencies below the fundamental reso-
nance of the individua} bubbles, the sound speed can be lowered dramatically.
This dependence is solely on the fractional volume or void fraction of bubbles
in the fluid (Wood, 1941). The physics behind the lowering of the sound speed
is that the bubbly region possesses a density close to that of the liquid, but
a much greater compressibility. The free gas establishes the compressibility,
While the water provides inertia. If one recalls that the sound speed in a fluid
medium is proportional to the square-root of the inverse product of the these
quantities, the physical basis for the sound speed defect becomes obvious.
For the low—frequency limiting case, the speed of sound in the mixture
is primarily governed by the void fraction 8. For 3 in the range 10~* to 1072,
the mixture sound speed can be lowered to values that fall well beneath the
sound speed in the liquid, and evén to values below the speed of sound in the
gas. This indeed is remarkable! It was demonstrated that the real portion of

the complex phase speed in the mixture is given by,

c. =/ 7Pw/Bp . (7.1)
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for frequencies below bubble resonance. Here, P, is the ambient pressure and
7 is the ratio of specific heats of the air. Note that c, decreases with increasing
void fraction. For 3 greater than approximately 1072, the effective sound speed
of the mixture is less than that encountered in either air or water alone.
Compared to a bubble, the wavelength of the sound at low frequencies
is, by definition, much greater than the bubble radii (and their respective
spacing), and thus a bubbly mixture can be considered an effective fluid having
a density near that of water and a sound speed that is dependent only on the

void fraction and not on the details of the bubble population statistics.

7.2 Scattering

In Chapter 3 the classical theory for acoustic scattering from a compliant
sphere in the free-field was presented. The solution for the scattered pressure
-at every point in the sphere’s exterior was given by a normal mode expansion
(Eq. 3.12). The solution was obtained by simply meeting the requirements
on the boundary of the sphere of continuous pressure and continuous normal
particle velocity and by exploiting the symmetry of the problem. Although not,
limited to scattering from acoustically compact bubble clouds, this problem
yields itself to a simple and straightforward analysis using the well established
collective oscillations model for the effective sound speed and effective density
as outlined in Chapter 2.

In addition to the full wave expansion, simple analytical expressions

were derived which approximate the monopole resonance frequency (£2,) and
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the target strength (TS) at this resonance of a bubble filled sphere (see Chap-
ter 3.4). It was determined that the monopole resonance frequency and TS
depend only on two physical characteristics of the bubble cloud: the total vol-
ume and the void fraction (8). It is important to stress that the monopole
TS level and €, can always be obtained without a detailed knowledge of the

bubble size distribution so long as 3 and the cloud dimensions are known.

7.3 The burden of proof

Since the burden of proof lies with the experimentalist, a lake test was carried
out in the fall of 1991 (See Chapters 4 and 5 for a detailed description of this
effort). The rational behind the experiment was to measure the frequency—
dependent backscatter target strength (TSg) of a submerged bubble cloud of
known properties in the free field under known propagation conditions. The
test, which was performed at the NUWC! Seneca Lake Sonar Test Facility, in-
volved the production of a bubble cloud of known geometry and void fraction
90 m beneath the surface of the lake. Using a parametric sound source, the
target strength of the cloud was measured for frequencies ranging from 250 Hz
to over 10kHz. The test results indicated the presence of a prominent scatter-
ing resonance whose level (TS ~ —3dB) and frequency (2, = 325 Hz) are well
predicted using classical scattering theory coupled with an effective medium
approximation and subject to a priori knowledge of the bubble cloud proper-
ties. This theory, which is described in Chapters 2 and 3, assumes monopole

scattering and freefield conditions, and models the acoustically compact cloud

1Naval Undersea Warfare Center
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as a sphere.

The acoustically compact cloud produced during the Lake Seﬁeca exper-
iment possess higher—order poles which are not easily described by the simple
analytical approach outlined in this dissertation. This is presumably due to
the fact that the cloud was neither a perfect sphere nor a perfect cylinder.
Unlike the monopole mode, the higher order resonances are dependent on the
shape of the cloud and the localized void fraction distribution within the cloud.

Based on the relatively good theoretical agreement with experimen-
tal findings of the Lake Seneca experiment (and recent ambient noise experi-
ments), it is quite plausible that bubble clouds are an important mechanism
related to the increase in surface scattering levels observed in the ocean during
periods of high sea state and for frequencies between 20 and 2000 Hz. In the
free—field, an acoustically compact bubble cloud scatters sound effectively in
its monopole mode and in quantitative agreement with the model based on a
spherical bubble cloud of uniform void fraction. To our knowledge, this is the

first report of monopole resonance scattering from a bubble cloud.

7.4 Scatter from subsurface bubble clouds

Although detailed experimental studies of the frequency dependent acoustic
scattering from individual bubble clouds immediately beneath the sea surface
have not been conducted, the simple model presented in Chapter 6 (Lloyd’s
Mirror) suggesté that near-surface bubble clouds are strong scattering targets,

even at the low frequencies. The most important determining factor in this
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case is the monopole resonance frequency of the cloud (dependent on 3 and a)
and the cloud depth beneath the surface relative to the wavelength; for small
d/X or small grazing angle, the TS is proportional to (d/A)*. A monopole
bubble cloud scatterer beneath the pressure release sea surface is acoustically
coupled to the surface and behaves as a simple dipole scatterer (method of
images).

In modeling the acoustic scatter from bubble clouds beneath the sea
surface, we are presented with an optimization problem which can be summa-
rized as follows: The free-field scattering model suggests that the monopole
resonance frequency decreases and the TS of the cloud increases as the cloud
radius is increased (all other parameters held fixed). Near the sea surface,
however, a cloud having a lower resonance frequency (and thus larger TS) is
less important due to destructive dipole interference. Furthermore, a cloud
with a low resonance frequency (say €}, = 100Hz or A = 15 m) is physically
unlikely to penetrate to depths in which the destructive dipole interference is
overcome. These high void fraction clouds are more likely to be present at high
sea states. Moreover, as the sea state becomes rougher, the dipole interference
effects become less important since the reflectivity of the sea surface decreases
as it diverges from its smooth pressure release value. Thus, the larger or higher
void fraction clouds play an increasing larger role as the sea state increases.

It should be noted that as with the Chapman-Harris and Chapman-
Scott sea surface scattering results and the associated empirical curves, any
“surface scattering model will likely display a “dipole-like” dependence similar

to that illustrated in Chapter 6 (i.e., (d/A)* sin ¢,). However, the hypothesis
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that relatively densely populated bubble clouds are the source of the scattered
sound is on an especially strong physical footing since the low—frequency sea
surface scattering levels are observed to increase dramatically at the moment
waves begin to break. Indeed, as is the case with underwater ambient noise
production, indications are that two distinct mechanisms are likely respon-
sible for the anomalous scattering results—one prior to, and one after wave
breaking. Finally, the recent surface scattering results reported by Adair and
Huster indicate that transient, spatially discrete, high target strength scatter-
ing centers exist in the upper 5m of the ocean surface during periods of high
sea state. These factors are not only strongly suggestive of bubble clouds, but

are also consistent with the simple model described in Chapter 6.

7.5 Remarks

The bubble cloud appears to resonate somewhat like a free bubble. Increasing
the size of the cloud decreases the resonance frequency and increases the free—
field target strength at resonance. Increasing the void fraction has the same
effect due to the reduction in sound speed within the cloud. For example, a
0.5 m radius cloud (8 = 5 x 1073 ) resonates at 75 Hz and possesses a free field
target strength of +10dB at resonance, whereas a 0.1 m radius cloud with the
same void fraction resonates at 370 Hz and has a target strength of —3.5dB.
Introduction of the surface leads to a dipole interaction. For a perfectly
smooth surface, the target strength can either increase or decrease depend-

ing on the frequency and the depth. Since the resonance frequency is also a
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function of cloud size and void fraction, the manifold of possible behavior is
quite broad. In general, larger clouds are more effected due to the fact that
they resonate at lower frequencies; the proximity of the surface is defined rel-
ative to the acoustic wavelength. Incoherent scattering brought on by surface
roughness reduces the impact of dipole interaction. As the wind picks up, or
as the acoustic frequency increases, the environment asymptotes to that of a
free field. It is interesting to note that the same environmental conditions that
lead to a diminishment of surface dipole interaction also result in high void
fraction bubble clouds entrained by breaking waves.

In this study, a simple model describing the low—frequency scattering
properties of high void fraction bubble clouds in both the free field and near
the ocean surface was developed. This model, which is based on an effec-
tive medium approximation and acoustically compact scatters, successfully
predicts the results of the bubble cloud scattering experiment carried out at
Lake Seneca for frequencies consistent with the model assumptions (Roy et al.,
1992). The introduction of the surface is facilitated by the method of images
and is subject to the same constraint of low—acoustic frequency imposed by the
compact scatterer assumption. This model is not intended to serve as an exact
replicate of oceanic bubble cloud scattering. Such an endeavor offers limited
utility, for the accuracy of any model is ultimately bounded by the quality of
the input data. The model herein was kept simple by design, for only then
can the complex physical behavior be expressed in a simple analytical form.
Simple, analytic theories facilitate the exploration of parameter space, and

more importantly serve to illuminate the underlying physics.
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Appendix A

Target Strength

A.1 Definition of target strength

Measurement of the scattering of acoustic waves from a submerged target is
" a complex process for which one does not always know the shape, volume,
orientation, or composition of the target. For this reason, the sonar commu-
nity has defined the relation target strength, which refers to the relative echo
strength returned by an underwater target. The targets may be of military
interest, such as mines, torpedoes, or submarines; of commercial interest, such
as schools of fish sought by fish finding sonar’s; or of academic interest, as in
the case for a spherical bubble cloud. The target sfrength, as defined by Urick
(1967), is

TS = 10log, (f—) , (A1)
Ii Ryer=1m
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where I; and I, are the incident and scattered acoustic intensities, respectively.
Furthermore, these values are evaluated at a reference distance of 1m from
the apparent origin of the scattered sound. Since the acoustic intensity is

proportional to the pressure amplitude squared, the TS can be written

TS = 20log, 22l (A.2)
Ipi|Rref=]-In

The reference distance of 1m is arbitrary and often causes underwater
objects to have positive target strength. Positive values should not be inter-
preted as meaning that the sound returned by the object is greater than that
incident upon it; rather it should be regarded as a consequence of an arbitrary
reference distance—for example, if a reference distance of 1km were used, all
customary targets would possess negative target strength (due to spherical
spreading of he outgoing acoustic wave). If the sonic wavelength inside the
scatterer is less than or on the order of the size of the target, resonances can
occur, possibly resulting in elevated target stréngthé.

In Figure A.1, the geometry for a scattering measurement from an ar-
bitrary target is shown. Here, H is the point at which the pressure amplitude
of the scattered wave is imagined to be measured and O is the acoustic center
of the target. Note that O may lie inside or outside the target itself and is
the point from which the returned sound appears to originate on the basis of
measurements made at some large distance from the target.

As an illustration, consider the target strength of a perfectly reflecting

sphere for large ka. The sphere (radius a) is considered large and rigid and
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scattered wave

incident wave

\,_/

Figure A.1l: Geometry of a target strength measurement from an arbitrary
scatterer. A plane wave (pi,c) is incident on the target from the left. A detector
located at point H records the scattered signal (ps) at a distance r and angle 6
from the forward scattering direction. Here, the origin of the scattered signal
is the center of the target.

is insonified by plane waves of intensity I;. The acoustic power intercepted
by the sphere is P; = ma?l;. Sound is scattered in all directions uniformly
and hence the total scattered power is P, = 4mr2l,. Since rigid targets do

not absorb energy, the scattered energy must be equal to that incident on the

target. Hence, the scattered acoustic intensity is given by the relation

mall; a?
s — 47‘_7‘2 - IlZ’ (A'3)
and thus the target strength for a perfectly reflecting sphere is
a
TS = 201log 3 (A4)

Evidently then, for a 2 m-radius perfectly reflecting sphere the TS is 0 dB.

203



Note that for this example, the reference distgnce R.t = 1m is inside the
sphere.

A prerequisite knowledge of the size, shape, and composition of the
scatterer are not necessary to perform target strength measurements (only the
range and magnitudes of the incident and scattered pressure fields are needed).
The preceding statement does not apply when one wishes to compare a TS
measurement with a theoretical model—in which case, the size, shape, and -

composition of the scatterer must be taken into account.

A.2 TS measurements — Steady state

Scattering experiments are usually conducted using directional transmitters
and pulses of sound rather than continuous plane waves. This is done primarily
to avoid unwanted reverberation from boundaries (tank walls, surfaces, etc.)
and the difficulty of measuring a scattered signal in the presence of the cw
incident wave. The most common experimental scattering arrangement is
the monostatic (pulse-echo) geometry in which the source and receiver are
located at the same or closely spaced points. If the transmitter and receiver
are separated by a wide distance, then the configuration is known as bistatic.

Consider Figure A.2 in which the geometry for a bistatic (or in this case,
quasi—-monostatic) backscattering target strength measurement is illustrated.
A pulsed directional source (S) is aimed at the target (T). Both the incident
and scattered waveforms are measured at some point between the target and

the source using the receiving hydrophone (H). The separation distances be-
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tween each of these objects are known accurately. Furthermore, the distances
Rsu, Rst, and Rty are large enough that the incident field is sufficiently

planar, and the scattered field appears to originate from a point.

Incident Scattered 4
Field Field ~ °
—> B S—
3 P .
I #
Rsn | Ryr
Rgr

Figure A.2: Geometry for quasi-monostatic scattering measurement. A di-
rectional source (S) is aimed at the target (T). Both the incident and scattered
waveforms are measured at the receiver (H). The distances between the com-
ponents are known accurately. The incident pressure amplitude measured at
the receiver H is p; g. Incidentally, the source and receiver are separated by a
large distance so that the incoming waves appear planar. Similarly, the scat-
tered pressure evaluated at unit distance from the target T is ps . H is small
enough that it does not interfere with the incident field.

At time t, = 0, the source sends out a pulse of sound of duration 7
and nearly constant angular frequency w = 27 f. The ratio of 7 to the period
1/f should be much larger than 1 in order for the pulse waveform to reach
a steady state ‘amplitude. However, the pulse length 7 must be less than
2Rry/c so that the incident and scattered pulses measured at detector H do

ot overlap at the detector location (c is the sound speed of the surrounding

fluid). At time ¢; = Rgu/c, the incident waveform is received at detector H,
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and the st'eady state voltage amplitude of this main bang pulse is measured
(MBV); the pressure amplitude of the incident pulse measured at the receiver
is piH-

The incident pressure wave continues to propagate toward the target,
intercepting it at time ¢ = Rgr/c at which point its amplitude is p;r. The
target responds to the incident pressure disturbancev by absorbing and scat-
tering sound. The portion of the scattered wave propagating in the backward
direction is received by detector H at time t3 = (Rsr+ Rrx)/c. The echo volt-
age amplitude recorded is EV; the backscattered pressure amplitude measured
is psu-

The target strength of the scatter is given by Eq. (A.2), and thus we
are left to determine the scattered and incident pressure amplitudes evaluated
at a distance of 1 m from the target origin. These absolute quantities directly
relate to the measured voltages after making corrections for receiving amplifier
gain, hydrophone calibration coefficients, and transmission losses due to 1/R
spherical spreading of the pulses.

The amplitude of the scattered pulse at receiver H is related to the

measured voltage amplitude EV as follows:

201og PsH  _ 99 log EV 4+ C — Gecho- (A.5)

Dref Vier

where pres = 1pPa and Viey = 1 volt by convention. The additive term C
is the decibel calibration coefficient of the receiver, and Geco is the amplifier

gain (in dB) employed to enhance the echo signal.
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The echo pressure amplitude evaluated at unit distance from the target

(ps,T) is related the measured scattered pressure amplitude at receiver H by

DsT DsH RTH
20log == = 20log—— +201lo ,
gpref gpref ngf
EV R
= 20log — + C — Gecho + 20log =, (A.6)
V;"ef Rref

where the quantity 20 log(Rsu/Ryes) is known as the transmission loss due to
spherical spreading.
Similarly, the measured incident main bang voltage (MBV) is related

to the main bang pressure amplitude (p, ) at the receiver by

P _ 9010 MBY

2010
s Dref ‘/ref

+C — G, (A7)

where G, is the amplifier gain factor in dB used to enhance the incident

signal measurement. Thus, the source level at the S is related to MBV by

piH Rsy
SL, = 20log=—— +20lo ,
’ g Dref 8 Rref :
MBV
= 20log +C = Gmp + 20log Rsu (A.8)
Vref Rrref

after correcting for spherical spreading losses. Using Eq. (A.8), the main bang
pressure amplitude evaluated at a unit distance from the target (p ) is given

in the following expression:

Di,T Rgst
20log—— = SL,—20lo , A9
8 Dref ° & Rfref ( )

207




where Rgr is the distance between the source and the target.
Now, the target strength can be evaluated using Eq. (A.2) by substitut-
ing Eq. (A.6), (A.8), and (A.9). Hence,

TS = 20log | 22| |
pi,T r=lm
EV Rsy
— 201 —20log —8  _ (Gecho — Gumb), :
0 0og MBV 0 log RSTRTH (Gech G b) (A 10)

Notice that all of the relative quantities (i.e., Vsef, Rref, Pres) have been elim-
inated. Furthermore, Eq. (A.10) is independent of the transmitter source level
(SL,) and the receiver calibration coefficient (C). Thus for a bistatic backscat-
tering measurement, only the separation distances between the components,
the difference in amplifier gain factors, and the voltage amplitudes of the main
bang and echo pulses need to be measured in order to accurately determine
the target strength of a scatterer at a given source driving frequency.

Shown in Figure A.3 is an example of a steady state TS measurement.
The incident and scattered pulse waveforms were measured from a single hy-
drophone. The source driving frequency is 1400 Hz, and the incident pulse
length is 12ms. The incident signal was amplified by 20dB. To increase the
resolution of the scattered pulse, the echo signal was amplified by 43dB. The
darker region in each plot corresponds to an 8 ms window over which the steady
state rms voltage amplitude measurements were conducted. In this case, the
rms voltages are MBV = 0.6 Vs, EV = 0.46 V1. The total transmission loss
factor, 20log Rsu/(RsTRra), is -22.38dB. For the settings listed above, the
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measured target strength as given by Eq. (A.10) is TS = —2.9dB.

" _echo : !
53 ..................... -
o ARNAAANNAS
>
1 i l 1 ]
0 0.01 0.02 0.03 0.04 0.05
Time (s) |
(a) Incident waveform
1k
z 05
o) 0 frvans
>
-05
e clippeld incident pulsc? .

0 0.01 0.02 0.03 0.04 0.05
Time (s)

(b) Backscattered waveform

Figure A.3: (a) Incident and scattered signal and (b) same as (a), except
added gain to enhance the echo waveform. The signals were acquired from a
single hydrophone. The source driving frequency is 1400 Hz, and the incident
pulse length is 12ms. The darker region in each plot corresponds to an 8 ms
window over which the steady state rms voltage amplitude measurements were
made. In this case, the rms voltages are MBV = 0.6 Vi, EV = 0.46 Vi rps. The
total transmission loss factor is —22.38 dB. Thus, the measured target strength
as given by Eq. (A.10) is -2.9 dB.
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A.3 TS measurements — transient pulses

In the previous section, the experimental method for determining the backscat-
ter target strength of an arbitrary scatterer versus frequency was outlined.
This method requires the use of an incident acoustic pulse at a well defined
single frequency, and pulses that are long enough so that a steady state re-
flected pulse is achieved. In order to determine the target strength over range
of frequencies, numerous steady state amplitude measurements must be con-
ducted, one at each frequency of interest.

However, no sound of finite duration produces a pure single frequency
note since such a sound theoretically lasts an infinite amount of time. Thus a
sound ﬁulse contains frequency components other than the desired frequency
which ultimately contribute to the scattered field. In general, the relation
between any time-dependent signal (pinc(t)) and the frequency spectrum of
the signal is given by Fourier’s Integral theorem. That is, the signal can be

written in the form

pinc(t) = /oo ﬁinc(w) ei“’t dw, (All)

—00

where pinc(w) is the frequency spectrum of the signal and w is the angular

frequency. Likewise, the frequency spectrum can be written as

Bn(w) = — / pune(t) et dt. (A.12)

T on oo

Eq.(A.11) and (A.12), are just generalizations of the corresponding equations
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applicable to Fourier series of periodic functions. The time series and frequency
spectrum, pinc(t) aﬁd Pinc(w), are generally complex.

Recall from Chapter 3 that the amplitude of the wave scattered from
a sphere can be written in terms of a scattering form function (F) and the
incident pressure amplitude (p,) as follows:

a

o |7 (ka)l, (A13)

Ds =

where a is the sphere radius, r is the distance from its center to the point
of reception, and w is the angular frequency. The amplitude of the incident
acoustic pressure measured at the center of the sphere, in its absence, may be

regarded as a function of time and is given by
Pinc(t) = po €™ (A.14)

Rewriting Eq. (A.13) in terms of the time dependence of Eq. (A.14), the scat-

tered acoustic pressure becomes a function of time:

Pu(t) = 5= |F(wo)] poc™e". (A.15)

From Eq. (A.11) and (A.12), it is clear that a time-dependent inci-
dent pressure pulse, p;(t) containing frequencies expressed in w space has a
frequency spectrum pi(w). Similar expressions exist for the time-dependent
scattered acoustic pulse and its frequency spectrum. From Eq. (A.15), the

scattered acoustic pressure amplitude at a single frequency, it can be shown
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that the relationship between the scattering form function and time-dependent

incident and scattered pulses is given by

/ ps(t)e‘i‘”/tdt = i]-'(w)/ Dinc(t) et dt,

—oo 2r —o0

a

ps(w) = gf(w)ﬁm(w) (A.16)
or further,
Ly 2 )
[Fw)l =~ @) (A.17)

This analysis yields a spectrum of measurements equivalent to the ’band-
width of the incident pulse, rather than a single point as in the steady state
analysis. That is, using Fourier techniques, one can determine the frequency
response over a range of frequencies from a single scattering'measurement.
This is because the bandwidth of a ‘mono—frequency’ pulse of center frequency
f, and pulse length 7 is approximately 1 /7. Thus for short pulse lengths (i.e.,
large bandwidths), a broad spectrum of information can be obtained by com-
paring the frequency content of the incident and scattered waveforms.

To perform this analysis using experimentally acquired data, the inci-
dent and scattered waveforms are digitized and the Fourier transforms calcu-
lated using the well known Fast Fourier Transform (FFT) algorithms. Consider
the previous example shown in Figure A.3. Peak normalized frequency spec-
trums of the incident and scattered pulses are shown in Figure A.4. Although

the spectrums appear very similar, it is clear that the peak frequency of the
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scattered pulse is shifted to a slightly lower value than center frequency of the
incident pulse. Also, for frequencies beyond the center frequency, the ampli-
tude of the scattered pulse frequency spectrum falls off more quickly than the

incident wave.

aVA \\/\ EVA ~_

i 0 N
1200 1300 1400 1500 1600 1200 1300 1400 1500 1600

(a) Incident pulse FFT. (b) Scattered pulse FFT

Figure A.4: Fourier transform of incident and scattered waveforms shown in
Figure A.3. The driving frequency is 1.4kHz, and the pulse length is 12 ms.
In these figures transform amplitudes are normalized to the peak value at the
center frequency.

The target strength can be determined from:

TS = 20log |2 SACOl I
pin(w) |r=1m
E~V(w) RSH
= 20log ———— — 20log ———— — (Gecho — Gmb)- A.18
& MBV(w) ® RsrRrn (G ) (4.18)

Here, the gain, transmission loss, and coefficients (SH, ST, TH) have the same
meaning as described in the previous section. Generally, Eq. (A.18) is evalu-

ated only over those frequencies within 3dB of the of the peak incident signal
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level. For the frequency spectrums in Figure A.4, the bandwidth of the pulses
is 83 Hz, and the resulting target strength decreases nearly linearly with fre-
quency resulting in target strengths Between -0.3 and -2.5 dB, very close the
to the steady state measurement of -2.9dB. The most attractive advantage of
using Fourier analysis, compared to the steady state measurement techniques,
is that a wider spectrum of data is obtained from a single measurement. There-
fore, fewer measurements are required to obtain the same spectrum. In ad-
dition, this technique offers improved frequency resolution and is thus better

equipped to resolve sharp resonance peaks in the measured form function.
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Table B.1: Seneca—2 Data Runs and Recording Parameters.

Data Run log Tape Desc Filters Recording Channel Description

FQ Cloud pg Spd Count HP LP Ch1 Ch 2 Ch 3 Ch 4

6400 MB1 43 38 1:330.0—340.0 100 7000 41dB, H1 41dB, H2 41dB, H3 41dB, H4
Al 1:355.0—360.0 61dB, H1 61dB, H2 61dB, H3 61dB, H4
A2 1:370.0—385.0
A3 1:385.0—401.0
A4 1:401.0—416.0
A5 1:416.0—431.0 '

4800 MB 45 38 1:522.0--537.0 100 | 6000 . 41dB, H1 41dB, H2 41dB, H3 41dB, H4
Al 1:537.0—552.0 61dB, H1 61dB, H2 61dB, H3 61dB, H4
A2 1:552.0—567.0
A3 1:567.0—582.‘0
A4 1:582.0—598.0

3200 MB 46 38 2:020.0—035.0 100 4400 41dB, H1 41dB, H2 41dB, H3 41dB, H4
Al 2:035.0—050.4 61dB, H1 61dB, H2 61dB, H3 61dB, H4
A2 2:050.4—065.6
A3 2:065.0—080.8
A4 2:080.8—095.9
A5 2:111.1—126.3

2400 MB 48 38 2:217.0—229.0 100 3000 38dB, H1 38dB, H2 38dB, H3 38dB, H4
Al 2:232,0——247.0 61dB, H1 61dB, H2 61dB, H3 61dB, H4
A2 2:247.0—268.0
A3 2:268.0—285.0
A4 2:285.0—304.0

2000 MB1 50 38 2:399.0—418.0 100 2600 38dB, H1 38dB, H2 38dB, H3 38dB, H4
Al 2:437.0—456.0 100 2600 61dB, H1 61dB, H2 61dB, H3 61dB, H4
A2 2:456.0—475.0
A3 2:475.0—494.0
A4 2:494.0—513.0

1600 Al 51 38 2:646.0—665.0 100 2200 61dB, H1 61dB, H2 61dB, H3 61dB, H4
A2 2:665.0—684.0 61dB, H1 61dB, H2 61dB, H3 61dB, H4
A3 2:684.0—700.0
A4 3:010.2—029.2
A5 3:029.2—048.1
A6 3:048.1—067.1

Hz # # cm/s Hz Hz Gain, Receiver

Continued on next page.
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Table B.1: (continued) .
Data Run log Tape Desc Filters Recording Channel Description
FQ Cloud Prg Spd Count HP LP Chi Ch 2 Ch 3 Ch 4
4000 MB 55 38 4:020.0—038.9 100 1800 43dB, H1 33dB, H2 43dB, H3 33dB, H4
Al » 4:057.9—076.8 61dB, H1 61dB, H2 61dB, H3 61dB, H4
A2 4:076.8—95.0
A3 4:095.0—114.0
A4 4:114.0—133.0
A5 4:133.0—153.0
A6 4:153.0—171.0
1200 MB 53 38 3:218.0—237.0 100 1800 43dB, H1 43dB, H2 43dB, H3 43dB, H4
Al 3:256.0—275.0 61dB, H1 61dB, H2 61dB, H3 61dB, H4
A2 3:275.0—294.0
A4 3:313.0—332.0
A5 3:332.0—351.0
7500 MB1 53 38 3:285.0—304.0 100 8200 414dB, H1 41dB, H2 41dB, H3 41dB, H4
Al 3:304.0—323.0 61dB, H1 61dB, H2 61dB, H3 61dB, H4
A2 3:323.0—341.0
A3 3:342.0—361.0
A4 3:361.0—380.0
800 MB 53 38 3:427.0—446.0 100 1000 46dB, H1 46 dB, H2 46dB, H3 46 dB, H4
Al 3:465.0-—484.0 61dB, H1 61dB, H2 61dB, H3 61dB, H4
A2 3:484.0—503.0
A3 3:503.0—522.0
A4 3:522.0—535.0
11k MB 58 38 4:494.0—513.0 100 1300 33dB, H1 33dB, H2 33dB, H3 33dB, H4
Al 4:513.0—532.0 61dB, H1 61dB, H2 61dB, H3 61dB, H4
A2 4:532.0—551.0
A3 4:551.0—569.0
A4 4:569.0—588.0
9000 PSc MB 61 38 5:594.0—617.0 100 12k —4dB, H1 —4dB, H2 -4dB, H3 —4dB, H4
PSc Al 5:617.0—640.0 21dB, H1 21dB, H2 21dB, H3 21dB, H4
PSc A2 5:640.0—662.0
PSc A3 5:662.0—686.0
PSc A4 5:686.0—710.0
PSc A6 6:087.0—109.0
Hz # # cm/s Hz Hz Gain, Receiver
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Table B.1: (continued) .

Data Run log Tape Desc Filters Recording Channel Description
FQ Cloud g Spd Count HP LP . Ch1 Ch 2 Ch 3 ‘ Ch 4
10k  PSc MB 61 38 6:223.0—246.0 100 13k 3dB, H1 3dB, H2 3dB, H3 3dB, H4
PSc Al 6:246.0-—269.0 21dB, H1 21dB, H2 21dB, H3 21dB, H4
PSc A2 6:269.0—2092.0 V
PSc A3 6:292.0—314.0
PSc A4 6:314.0—337.0
3000 PSc MB 65 38 6:497.0—519.0 100 4500 44dB, H1 44dB, H2 44dB, H3 44dB, H4
PSc Al | 6:519.0—542.0 61dB, H1 61dB, H2 61dB, H3 61dB, H4
PSc A2 6:542.0-—565.0
PSc A3 6:565.0—587.0
PSc A4 6:587.0—610.0
xxx MB 65 XX 6:632.0—655.0 100 | 4500 41dB, H1 41dB, H2 41dB, H3 41dB, H4
Al 6:655.0—678.0 61dB, H1 61dB, H2 61dB, H3 61dB, H4
A2 6:678.0—700.0
14k PSc MB 65 76 7:045.9—091.5 100 16k —-8dB, H1 -10dB, H2 -8dB, H3 —8dB, H4
PSc Al 7:091.5—136.6 11dB, H1 11dB, H2 11dB, H3 11 dB, H4
PSc A2 7:136.6—181.9
PSc A3 7:181.9—227.0
PSc A4 7:227.0—273.0
PSc A5 7:273.0—319.0
PSc A6 7:319.0—364.0
1000 Al 69 38 7:430.0—452.0 100 2000 63dB, H1 63dB,H2 63dB, H3 63dB, H4
A2 7:475.0—498.0 63dB, H1 63dB, H2 63dB, H3 63dB, H4
A3 7:498.0—521.0
A4 7:521.0—536.0
1200 MB 69 76 7:627.0—631.0 100 1800 40dB, H1 40dB, H2 40dB, H3 40dB, H4
Al 7:631.0—646.0 63dB, H1 63dB, H2 63dB, H3 63dB, H4
A2 7:646.0—661.0
A3 7:661.0—675.0
A4 8:020.0—035.0
A5 .| 8:035.0—050.0
A6 8:065.0—080.0
1300 MB 70 38 8:141.0—160.0 100 2000 40dB, H1 40dB, H2 40dB, H3 40dB, H4
Al 8:144.0—160.0 63dB, H1 63dB, H2 63dB, H3 63dB, H4
A2 8:160.0—175.0
A3 8:175.0—190.0
A4 8:190.0—206.0
Hz # # em/s Hz Hz Gain, Receiver

Continued on nert page.
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Table B.1: (continued) .
Data Run log Tape Desc Filters Recording Channel Description
FQ Cloud Pg Spd Count HP LP Ch 1 Ch 2 Ch 3 Ch 4
1100 MB 71 38 8:250.0—253.0 100 1800 41dB, H1 41dB, H2 41dB, H3 41dB, H4
Al 8:253.0—269.0 63 ;:IB, H1 63dB, H2 63dB, H3 63dB, H4
A2 8:269.0—284.0
A3 8:284.0-—299.0
A4 8:299.0—314.0
AS 8:314.0—329.0
8250 MB 71 38 8:374.0—-378.0 100 9500 41dB, H1 41dB, H2 41dB, H3 41dB, H4
Al 8:378.0-—393.0 61dB, H1 61dB, H2 61dB, H3 61dB, H4
A2 8:393.0—409.0
A3 8:409.0—424.0
A4 8:424.0—439.0
A5 8:439.0—454.0
7500 MB 72 38 8:469.0—473.0 100 9500 43dB, H1 43dB, H2 43dB, H3 43dB, H4
Al 8:473.0—488.0 66dB, H1 66dB, H2 66dB, H3 66 dB, H4
A2 8:488.0—503.0
A3 8:503.0—518.0
A4 8:518.0—552.0
1000 CS1 A2 76 38 10:306.0—315.0 100 1300 41dB, H1 41dB, H2 51dB, H3 42dB, H4
500 CS1 Al 76 38 10:020.0—044.0 100 1300 50dB, H1 45dB, H2 60dB, H3 46 dB, H4
CS1 A2 10:044.0—057.0
550 CS1 Al 76 38 10: 57.0—74.0 100 1300 50dB, H1 45dB, H2 60dB, H3 46 dB, H4
CS1 A2 10:057.0—074.0
600 CS1 Al 76 38 10: 74.0—90.0 100 1300 50dB, H1 45dB, H2 60dB, H3 46dB, H4
CS1 A2 10:105.0—116.0
650 CS1 Al 76 38 10:116.0—130.0 100 1300 41dB, H1 41dB, H2 51dB, H3 42dB, H4
CS1 A2 10:130.0—145.0
Hz # # cm/s Hz Hz Gain, Receiver
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Table C.1: Seneca-3 Ddta Runs and Recording Parameters.

Data Run Tape Desc Filters Recording Channel Description

FQ Cloud Spd Count HP Lp Ch 1 Ch 2 Ch 3 Ch 4

Al 7:156.0—165.0

A2 7:165.0—171.0 20dB, H1 46 dB, H1 20dB, H2 46 dB, H2
1500 19 o 2500

A3 7:171.0—178.0 MB EV MB EV

A4 7:178.0—184.0

Al 7:204.8—214.0

A2 7:214.0—221.0 20dB, H1 46 dB, H1 20dB, H2 46 dB, H2
1300 19 0o 2500

A3 7:221.0—232.0 MB EV MB EV

A4 7:232.0—239.0

Al 7:239.0—248.0

A2 7:248.0—252.0 204dB, H1 43dB, H1 20dB, H2 46 dB, H2
1100 19 0 2500

A3 7:257.0—263.0 MB EV MB EV

A4 7:263.0—271.0

Al 7:271.0—279.0

A2 7:279.0—286.0 20dB, H1 43dB, H1 20dB, H2 46 dB, H2
1000 19 0 2500

A3 7:286.0—294.0 MB EV MB EV

A4 7:294.0—301.0

Al 7:301.0—310.0

A2 7:310.0—317.0 20dB, H1 43dB, H1 23dB, H2 46dB, H2
900 19 0 2500

A3 7:317.0—325.0 MB EV MB EV

A4 7:325.—332.6

Al 7:333.0—341.0

A2 7:341.0—348.0 20dB, H1 43dB, H1 20dB, H2 46dB, H2
1200 19 0 2500

A3 7:348.0—356.0 MB EV MB EV

A4 7:356.0-—362.0

Al 7:362.0—371.0

A2 7:371.0—378.0 23dB, H1 46 dB, H1 23dB, H2 50dB, H2
800 19 0 2500 '

A3 7:378.0—385.2 MB EV MB EV

A4 7:385.3—392.4

Al 7:392.1—401.0

A2 7:401.0—409.8" 23dB, H1 50dB, H1 23dB, H2 53dB, H2
700 19 0 2500

A3 7:409.8—417.8 MB EV MB EV

A4 7:417.8—426.1

Al 7:426.1—435.7

A2 7:435.7—442.8 23dB, H1 50dB, H1 23dB, H2 53dB, H2
600 19 0 2500

A3 7:442.8—452.8 MB EV MB EV

A4 7:452.8—459.0 )

Hz # cm/s Hz Hz Gain', Receiver

Continued on nert page.
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Table C.1: (continued)

Data Run Tape Desc Filters Recording Channel Description

FQ Cloud Spd Count HP LP Ch 1 Ch 2 Ch 3 Ch 4

Al 7:459.0—468.1

A2 7:468.0—476.1 23dB, H1 50dB, Hi 23dB, H2 53dB, H2
550 19 o] 2500

A3 7:476.1—484.6 MB EV | MB EV

A4 7:484.6—491.5

Al 7:491.5—499.5

A2 7:499.0—507.1 26 dB, H1 50dB, H1 26dB, H2 53dB, H2
500 19 0 2500

A3 7:507.1—515.6 MB EV MB EV

A4 7:515.6—522.4

Al 7:522.4—531.8

A2 7:531.8—539.6 30dB, H1 50dB, H1 30dB, H2 53dB, H2
450 19 0 2500

A3 7:539.6—548.0 MB EV MB EV

A4 7:548.0—555.1

Al 7:555.1—565.0

A2 7:565.0—573.1 30dB, H1 50dB, H1 30dB, H2 53dB, H2
400 19 0 2500

A3 7:573.1—580.0 MB EV MB EV

A4 7:580.0—587.4

Al 7:593.8—602.8

A2 7:602.8—609.2 30dB, H1 50dB, H1 30dB, H2 53dB, H2
350 19 0 2500

A3 7:609.2—616.7 MB EV MB EV

A4 7:616.7—623.0

Al 7:623.0—631.7

A2 7:631.7—639.8 30dB, H1 50dB, H1 30dB, H2 53dB, H2
300 19 4] 2500

A3 7:639.8—647.2 MB EV MB EV

A4 7:647.2—654.9

Al 7:654.9—664.0

A2 7:664.0—673.7 30dB, H1 50dB, H1 30dB, H2 53dB, H2
250 19 4] 2500

A3 7:673.7—680.7 MB EV MB EV

A4 7:680.7—688.0

Al 8: 10.0— 19.2

A2 8:019.2—027.2 20dB, H1 43dB, H1 20dB, H2 43dB, H2
1400 19 0 2500

A3 8:027.2—035.5 MB EV MB EV

A4 8:035.5—042.6 .

Hz # cm/s Hz Hz Gain, Receiver

Continued on next page.
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Table C.1: (continued)

Data Run Tape Desc Filters Recording Channel Description

FQ Cloud Spd Count HP LP Ch1 Ch 2 Ch 3 Ch 4

Al 8:042.6—050.9

A2 8:050.9—057.8 20dB, H1 43dB, H1 20dB, H2 43dB, H2
3000 19 0 4000

A3 8:057.8—064.8 MB EV MB EV

A4 8:064.8—071.4

Al 8:071.4—079.1

A2 8:09.1—086.2 20dB, H1 43dB, H1 20dB, H2 43dB, H2
3500 19 0 5000

A3 8:086.2—093.5 MB EV MB EV

A4 8:093.5—101.0

Al 8:101.0—108.4

A2 8:108.4—115.7 204dB, H1 43dB, H1 20dB, H2 43dB, H2
2500 19 o 4000

A3 8:115.7—123.4 MB EV MB EV

A4 8:123.4-—129.9

Al 8:129.9—140.2

A2 8:140.2—147.0 204dB, H1 434dB, H1 20dB, H2 43dB, H2
2000 19 0 3500

A3 8:147.0—155.0 MB EV MB EV

A4 8:155.0—161.7

Hz # cm/s Hz Hz Gain, Receiver
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Appendix D

Error analysis methods

A simple and straightforward error-analysis was performed in order to quantify

the accuracy and precision of the measured data and calculated results. A brief

description of the fundamental measurements performed, quantifiable errors

in these measurements, and the propagation of these errors is described in this

section.

D.1 Directly measured quantities

Several direct measurements were performed during the course of this experi-
ment, including, but not limited to: the mass volume of air injected into each
bubble cloud released into Lake Seneca, the bubble radius distribution released
from a single needle tip, the radius-height profile of a rising bubble cloud, and
the incident main bang and backscattered voltages measured from the receiver
outputs. In such cases where the number of measurements performed was large

(such as the measurement of the total gas volume and of the bubble radius dis-
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tribution), the accepted experimental value and uncertainty were determined
statistically from the mean and standard deviation of the measurements. For
example, the measurement of the total gas volume of a single bubble cloud
was described in Chapter 4.3.6. In this case, a large number of measurements
were performed with a precisely calibrated instrument (the electronic mass
flow meter). Over the course of the experiment, the mean total gas volume
injected into the bubble cloud is m, and the standard deviation of
these measurements is dVg,s = .0141. Therefore, the accepted experimental
value for the total gas volume is 1.22 £ .014 .

In other cases where the sample size was relatively small (< 10 samples),
the experimental error was estimated from some systematic uncertainty (i.e.,
limited by the resolution of the measurement device) or, where appropriate, a
“best—guess” error estimate (e.g., the radial profile of the bubble cloud is not
clearly defined, as described in Chapter 4.3.4). In this case, the error intro-
duced by the non—distinct cloud boundary (= *1c,) exceeded the systematic

error of the measuring device (a mm scaled ruler).

D.2 Derived quantities

In addition to the basic measurements described above, there are a host of
derived quantities which are dependent on the directly measured values. These
include, but are not limited to, derived quantities such as the mixture sound
speed, the volume of the scatterer, the resonance frequency of the bubble

cloud, the target strength, etc. All of these quantities are derived from the
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equations specified in the text. The uncertainties in the basic measurements
are propagated through the equations using a Taylor series expanéion to first
order in the perturbed quantities. For example, the uncertainty in the void |
fraction is determined by the combined uncertainty in the total gas volume
measurement (directly measured), and the uncertainty in the net cloud volume

(a derived quantity) as follows:

_‘_/_g:a_S__ dV;:loud

Vis
AVyas
® Vcloud 2

Vcloud

f+dB= Voas + + . (D.1)

Veloud |

Here, the quantities preceded by d denote the deviation or uncertainty of the
(directly or indirectly) measured values. The absolute value of each term
was taken to effectively yield an upper bound on net error. The mean and

uncertainty in the void fraction are calculated from

Vigas

= D.2

ﬁ ‘/cloud ( )
V \% ,

dB = |=BdVis| + | =25dVaioud| - D.3

IB Vcloud & Vcloud2 toud ( )

This technique for propagating the experimental error was carried out for all
derived quantities described in the text in a manner analogous to the one

described above.

D.3 Experimental Uncertainties

For the most part, the measurements processes are described ini Chapter 4. The

accepted experimental values and projected errors obtained from these mea-
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surements using the error propagation technique described above are summa-
rized in Table 4.5. Listed below is a summary of how the uncertainties (errors)
assigned to the various non-derived quantities, measured and otherwise, were

determined.

¢ Vi.s(Gas volume) Chapter 4.3.6: The error in the total gas volume mea-
surement was taken from the standard deviation of of 112 independent

measurements as described in Chapter 4.3.6

e L (Cloud length) Chapter 4.3.3: The error in the cloud length was based
on the error in the cloud velocity measurements and the error in the
accuracy of the measured height of the camera deployed above the bubble

maker.

e Bubble Size distribution Chapter 4.3.7: The error in the bubble size
distribution measurements was determined from the standard deviation

of the measured values.

o f (Acoustic driving frequency): The center frequency was determined
from the readout of the “up/down” shifter for the NUWC parametric

source. No uncertainty was assigned to it’s measured value.

e MB (Main bang voltage) Chapter 5: For a given driving frequency
the mean main bang voltage was determined by multiple measurements
taken for repeated cloud releases as described. The uncertainty repre-
sents the spread in the ﬁlaximum and minimum measured values ob-

served at a given frequency.
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EV (Echo voltage) Chapter 5: For a given driving frequency the mean
echo voltage was determined by multiple measurements taken for re-
peated cloud releases as described. The uncertainty represents the spread
in the maximum and minimum measured values observed at a given fre-

quency.

d (depth) Chapters 4 and 5: The deployment depths for the hydrophones,
sources, and the bubble maker was determined using a cable meter. The

possible error in this measurement was not quantified.

Po (hydrostatic pressure): The hydrostatic pressure was determined
from the deployment depth. The possible error in this measurement

was not quantified.

¢ (liquid sound speed): The liquid sound speed versus depth profile was
provided by NUSC daily. The possible error in this measurement was

not quantified.

¢, (sound speed of air): The ambient pressure dependent gaseous sound
speed was determined from the well known relationships provided in

texts (Kinsler et al., 1982). No uncertainty was specified.

p (liquid density): The hydrostatic pressure dependent liquid density was
determined from the well known relationships provided in texts (Kinsler

et al., 1982). No uncertainty was specified.

p, (density of air): The hydrostatic pressure dependent density of air was

determined from the well known relationships provided in texts (Kinsler
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et al., 1982). No uncertainty was specified.

¢ « (polytropic exponent): The polytropic exponent for air was calculated

from equations specified in the text. No uncertainty was specified.
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Appendix E

Rise—time dependent target

strength measurements

Shown here are the time—elapsed backscattering data runs used to compose
Figure 5.16. The target strength measurements were conducted during the
Seneca—3 experiment using receiver H1, the closest to the target. The average
target strength for these three» runs is indicated by by the dashed line. It is
clear that there is a significant deviation in the measured TS in the first few
seconds after cloud release and again after 20s. This variability is likely due
to the low signal to noise present when the cloud is just entering and exiting
the beam, as well as non—uniformities in the shape or localized distribution of
the bubbles within the three clouds, as well as the possibility that the clouds
did not rise along the same path. However, in bins 5-15, the measured TS for

the three clouds is highly repeatable.
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Appendix F

Source Codes
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